NexxDigital - компьютеры и операционные системы

История оперативной памяти , или ОЗУ , началась в далёком 1834 году, когда Чарльз Беббидж разработал «аналитическую машину» - по сути, прообраз компьютера. Часть этой машины, которая отвечала за хранение промежуточных данных, он назвал «складом». Запоминание информации там было организовано ещё чисто механическим способом, посредством валов и шестерней.

В первых поколениях ЭВМ в качестве ОЗУ использовались электронно-лучевые трубки, магнитные барабаны, позже появились магнитные сердечники, и уже после них, в третьем поколении ЭВМ появилась память на микросхемах.

Сейчас ОЗУ выполняется по технологии DRAM в форм-факторах DIMM и SO-DIMM , это динамическая память, организованная в виде интегральных схем полупроводников. Она энергозависима, то есть данные исчезают при отсутствии питания.

Выбор оперативной памяти не является сложной задачей на сегодняшний день, главное здесь разобраться в типах памяти, её назначении и основных характеристиках.

Типы памяти

SO-DIMM

Память форм-фактора SO-DIMM предназначена для использования в ноутбуках, компактных ITX-системах, моноблоках - словом там, где важен минимальный физический размер модулей памяти. Отличается от форм-фактора DIMM уменьшенной примерно в 2 раза длиной модуля, и меньшим количеством контактов на плате (204 и 360 контактов у SO-DIMM DDR3 и DDR4 против 240 и 288 на платах тех же типов DIMM-памяти).
По остальным характеристикам - частоте, таймингам, объёму, модули SO-DIMM могут быть любыми, и ничем принципиальным от DIMM не отличаются.

DIMM

DIMM - оперативная память для полноразмерных компьютеров.
Тип памяти, который вы выберете, в первую очередь должен быть совместим с разъёмом на материнской плате. ОЗУ для компьютера делится на 4 типа – DDR , DDR2 , DDR3 и DDR4 .

Память типа DDR появилась в 2001 году, и имела 184 контакта. Напряжение питания составляло от 2.2 до 2.4 В. Частота работы – 400МГц . До сих пор встречается в продаже, правда, выбор невелик. На сегодняшний день формат устарел, - подойдёт, только если вы не хотите обновлять систему полностью, а в старой материнской плате разъёмы только под DDR.

Стандарт DDR2 вышел уже в 2003-ем, получил 240 контактов, которые увеличили число потоков, прилично ускорив шину передачи данных процессору. Частота работы DDR2 могла составлять до 800 МГц (в отдельных случаях – до 1066 МГц), а напряжение питания от 1.8 до 2.1 В – чуть меньше, чем у DDR. Следовательно, понизились энергопотребление и тепловыделение памяти.
Отличия DDR2 от DDR:

· 240 контактов против 120
· Новый слот, несовместимый с DDR
· Меньшее энергопотребление
· Улучшенная конструкция, лучшее охлаждение
· Выше максимальная рабочая частота

Также, как и DDR, устаревший тип памяти - сейчас подойдёт разве что под старые материнские платы, в остальных случаях покупать нет смысла, так как новые DDR3 и DDR4 быстрее.

В 2007 году ОЗУ обновились типом DDR3 , который до сих пор массово распространён. Остались всё те же 240 контактов, но слот подключения для DDR3 стал другим – совместимости с DDR2 нет. Частота работы модулей в среднем от 1333 до 1866 МГц . Встречаются также модули с частотой вплоть до 2800 МГц .
DDR3 отличается от DDR2:

· Слоты DDR2 и DDR3 несовместимы.
· Тактовая частота работы DDR3 выше в 2 раза – 1600 МГц против 800 МГц у DDR2.
· Отличается сниженным напряжением питания – порядка 1.5В, и меньшим энергопотреблением (в версии DDR3L это значение в среднем ещё ниже, около 1.35 В).
· Задержки (тайминги) DDR3 больше, чем у DDR2, но рабочая частота выше. В целом скорость работы DDR3 на 20-30% выше.

DDR3 - на сегодня хороший выбор. Во многих материнских платах в продаже разъёмы под память именно DDR3, и в связи с массовой популярностью этого типа, вряд ли он скоро исчезнет. Также он немного дешевле DDR4.

DDR4 – новый тип ОЗУ, разработанный только в 2012 году. Является эволюционным развитием предыдущих типов. Пропускная способность памяти снова повысилась, теперь достигая 25,6 Гб/с. Частота работы также поднялась – в среднем от 2133 МГц до 3600 МГц . Если же сравнивать новый тип с DDR3, который продержался на рынке целых 8 лет и получил массовое распространение, то прирост производительности незначителен, к тому же далеко не все материнские платы и процессоры поддерживают новый тип.
Отличия DDR4:

· Несовместимость с предыдущими типами
· Пониженно напряжение питания – от 1.2 до 1.05 В, энергопотребление тоже снизилось
· Рабочая частота памяти до 3200 МГц (может достигать 4166 МГц в некоторых планках), при этом, конечно, выросшие пропорционально тайминги
· Может незначительно превосходить по скорости работы DDR3

Если у вас уже стоят планки DDR3, то торопиться менять их на DDR4 нет никакого смысла. Когда этот формат распространится массово, и все материнские платы уже будут поддерживать DDR4, переход на новый тип произойдёт сам собой с обновлением всей системы. Таким образом, можно подытожить, что DDR4 – скорее маркетинг, чем реально новый тип ОЗУ.

Какую частоту памяти выбрать?

Выбор частоты нужно начинать с проверки максимально поддерживаемых частот вашим процессором и материнской платой. Частоту выше поддерживаемой процессором имеет смысл брать только при разгоне процессора.

На сегодняшний день не стоит выбирать память с частотой ниже 1600 МГц. Вариант 1333 МГц допустим в случае DDR3, если это не завалявшиеся у продавца древние модули, которые явно будут медленнее новых.

Оптимальный вариант на сегодня - это память с интервалом частот от 1600 до 2400 МГц . Частота выше почти не имеет преимущества, но стоит гораздо дороже, и как правило является разогнанными модулями с поднятыми таймингами. Для примера, разница между модулями в 1600 и 2133 Мгц в ряде рабочих программ будет не более 5-8 %, в играх разница может быть ещё меньше. Частоты в 2133-2400 Мгц стоит брать, если вы занимаетесь кодированием видео/аудио, рендерингом.

Разница же между частотами в 2400 и 3600 Мгц обойдётся вам довольно дорого, при этом не прибавив ощутимо скорости.

Какой объём оперативной памяти брать?

Объём, который вам понадобится, зависит от типа работы, производимой на компьютере, от установленной операционной системы, от используемых программ. Также не стоит упускать из виду максимально поддерживаемый объём памяти вашей материнской платой.

Объём 2 ГБ - на сегодняшний день, может хватить разве что только для просмотра интернета. Больше половину будет съедать операционная система, оставшегося хватит на неторопливую работу нетребовательных программ.

Объём 4 ГБ
– подойдёт для компьютера средней руки, для домашнего пк-медиацентра. Хватит, чтобы смотреть фильмы, и даже поиграть в нетребовательные игры. Современные – увы, с потянет с трудом. (Станет лучшим выбором, если у вас 32-разрядная операционная система Windows, которая видит не больше 3 ГБ оперативной памяти)

Объём 8 ГБ (или комплект 2х4ГБ) – рекомендуемый объём на сегодня для полноценного ПК. Этого хватит для почти любых игр, для работы с любым требовательным к ресурсам софтом. Лучший выбор для универсального компьютера.

Объём 16 ГБ (или наборы 2х8ГБ , 4х4ГБ)- будет оправданным, если вы работаете с графикой, тяжёлыми средами программирования, или постоянно рендерите видео. Также отлично подойдёт для ведения онлайн-стримов – здесь с 8 ГБ могут быть подвисания, особенно при высоком качестве видео-трансляции. Некоторые игры в высоких разрешениях и с HD-текстурами могут лучше себя вести с 16 ГБ оперативной памяти на борту.

Объём 32 ГБ (набор 2х16ГБ , или 4х8ГБ)– пока очень спорный выбор, пригодится для каких-то совсем экстремальных рабочих задач. Лучше будет потратить деньги на другие комплектующие компьютера, это сильнее отразится на его быстродействии.

Режимы работы: лучше 1 планка памяти или 2?

ОЗУ может работать в одно-канальном, двух-, трёх- и четырёх-канальном режимах. Однозначно, если на вашей материнской плате есть достаточное количество слотов, то лучше взять вместо одной планки памяти несколько одинаковых меньшего объёма. Скорость доступа к ним вырастет от 2 до 4 раз.

Чтобы память работала в двухканальном режиме, нужно устанавливать планки в слоты одного цвета на материнской плате. Как правило, цвет повторяется через разъём. Важно при этом, чтобы частота памяти в двух планках была одинаковой.

- Single chanell Mode – одноканальный режим работы. Включается, когда установлена одна планка памяти, или разные модули, работающие на разной частоте. В итоге память работает на частоте самой медленной планки.
- Dual Mode – двухканальный режим. Работает только с модулями памяти одинаковой частоты, увеличивает скорость работы в 2 раза. Производители выпускают специально для этого комплекты модулей памяти , в которых может быть 2 или 4 одинаковых планки.
- Triple Mode – работает по тому же принципу, что и двух-канальный. На практике не всегда быстрее.
- Quad Mode - четырёх-канальный режим, который работает по принципу двухканального, соответственно увеличивая скорость работы в 4 раза. Используется, там где нужна исключительно высокая скорость - например, в серверах.

- Flex Mode – более гибкий вариант двухканального режима работы, когда планки разного объёма, а одинаковая только частота. При этом в двухканальном режиме будут использоваться одинаковые объёмы модулей, а оставшийся объём будет функционировать в одноканальном.

Нужен ли памяти радиатор?

Сейчас уже давно не те времена, когда при напряжении в 2 В достигалась частота работы в 1600 МГц, и в результате выделялось много тепла, которое надо было как-то отводить. Тогда радиатор мог быть критерием выживаемости разогнанного модуля.

В настоящее время же энергопотребление памяти сильно снизилось, и радиатор на модуле может быть оправдан с технической точки зрения, только если вы увлекаетесь оверклокингом, и модуль будет работать у вас на запредельных для него частотах. Во всех остальных случаях радиаторы можно оправдать, разве что, красивым дизайном.

В случае, если радиатор массивный, и заметно увеличивает высоту планки памяти – это уже существенный минус, поскольку он может помешать вам поставить в систему процессорный суперкулер. Существуют, кстати, специальные низкопрофильные модули памяти , предназначенные для установки в компактные корпуса. Они несколько дороже модулей обычного размера.



Что такое тайминги?

Тайминги , или латентность (latency) – одна из самых важных характеристик оперативной памяти, определяющих её быстродействие. Обрисуем общий смысл этого параметра.

Упрощённо оперативную память можно представить, как двумерную таблицу, в которой каждая ячейка несёт информацию. Доступ к ячейкам происходит по указанию номера столбца и строки, и указание это происходит при помощи стробирующего импульса доступа к строке RAS (Row Access Strobe ) и стробирующего импульса доступа к столбцу CAS (Acess Strobe ) путём изменения напряжения. Таким образом, за каждый такт работы происходят обращения RAS и CAS , и между этими обращениями и командами записи/чтения существуют определённые задержки, которые и называются таймингами.

В описании модуля оперативной памяти можно увидеть пять таймингов, которые для удобства записываются последовательностью цифр через дефис, например 8-9-9-20-27 .

· tRCD (time of RAS to CAS Delay) - тайминг, который определяет задержку от импульса RAS до CAS
· CL (timе of CAS Latency) - тайминг, определяющий задержку между командой о записи/чтении и импульсом CAS
· tRP (timе of Row Precharge) - тайминг, определяющий задержку при переходах от одной строки к следующей
· tRAS (time of Active to Precharge Delay) - тайминг, который определяет задержку между активацией строки и окончанием работы с ней; считается основным значением
· Command rate – определяет задержку между командой выбора отдельного чипа на модуле до команды активации строки; этот тайминг указывают не всегда.

Если говорить ещё проще, то о таймингах важно знать только одно – чем их значения меньше, тем лучше. При этом планки могут иметь одинаковую частоту работы, но разные тайминги, и модуль с меньшими значениями всегда будет быстрее. Так что стоит выбирать минимальные тайминги, для DDR4 ориентиром средних значений будут тайминги 15-15-15-36, для DDR3 - 10-10-10-30. Также стоит помнить, что тайминги связаны с частотой памяти, так что при разгоне скорее всего придётся поднять и тайминги, и наоборот - можно вручную опустить частоту, снизив при этом тайминги. Выгоднее всего обращать внимание на совокупность этих параметров, выбирая скорее баланс, и не гнаться за крайними значениями параметров.

Как определиться с бюджетом?

Располагая большей суммой, вы сможете позволить себе больший объём оперативной памяти. Основное отличие дешёвых и дорогих модулей будет в таймингах, частоте работы, и в бренде – известные, разрекламированные могут стоить немного дороже noname модулей непонятного производителя.
Кроме того, дополнительных денег стоит радиатор, установленный на модули. Далеко не всем планкам он нужен, но производители сейчас на них не скупятся.

Цена будет также зависеть от таймингов, чем они ниже- тем выше скорость, и соответственно, цена.

Итак, имея до 2000 рублей , вы сможете приобрести модуль памяти объёмом 4 ГБ, или 2 модуля по 2 ГБ, что предпочтительнее. Выбирайте в зависимости от того, что позволяет конфигурация вашего пк. Модули типа DDR3 обойдутся почти вдвое дешевле чем DDR4. При таком бюджете разумнее брать именно DDR3.

В группу до 4000 рублей входят модули объёмом в 8 ГБ, а также наборы 2х4 ГБ. Это оптимальный выбор для любых задач, кроме профессиональной работы с видео, и в любых других тяжёлых средах.

В сумму до 8000 рублей обойдётся объём памяти в 16 ГБ. Рекомендуется для профессиональных целей, или для заядлых геймеров - хватит даже про запас, в ожидании новых требовательных игр.

Если не проблема потратить до 13000 рублей , то самым лучшим выбором будет вложить их в набор из 4 планок по 4 ГБ. За эти деньги можно выбрать даже радиаторы покрасивее, возможно для последующего разгона.

Больше 16 ГБ без цели работы в профессиональных тяжёлых средах (да и то не во всех) брать не советую, но если очень хочется, то за сумму от 13000 рублей вы сможете залезть на Олимп, приобретя комплект на 32 ГБ или даже 64 ГБ . Правда, смысла для рядового пользователя или геймера в этом будет не много – лучше потратить средства, скажем, на флагманскую видеокарту.

Основные характеристики оперативной памяти (ее объем, частота, принадлежность к одному из поколений) могут быть дополнены еще одним важнейшим параметром - таймингами. Что они представляют собой? Можно ли их изменять в настройках BIOS? Как это делать наиболее корректным, с точки зрения стабильной работы компьютера, образом?

Что такое тайминги ОЗУ?

Тайминг оперативной памяти - это временной интервал, за который команда, отправляемая контроллером ОЗУ, выполняется. Измеряется эта единица в количестве тактов, которые пропускаются вычислительной шиной, пока идет обработка сигнала. Сущность работы таймингов проще понять, если разобраться в устройстве микросхем ОЗУ.

Оперативная память компьютера состоит из большого количества взаимодействующих ячеек. Каждая имеет свой условный адрес, по которому к ней обращается контроллер ОЗУ. Координаты ячеек, как правило, прописываются посредством двух параметров. Условно их можно представить как номера строк и столбцов (как в таблице). В свою очередь, группы адресов объединяются, чтобы контроллеру было "удобнее" находить конкретную ячейку в более крупную область данных (иногда ее называют "банком").

Таким образом, запрос к ресурсам памяти осуществляется в две стадии. Сначала контроллер отправляет запрос к "банку". Затем он запрашивает номер "строки" ячейки (посылая сигнал типа RAS) и ждет ответа. Длительность ожидания - это и есть тайминг оперативной памяти. Его общепринятое наименование - RAS to CAS Delay. Но это еще не все.

Контроллеру, чтобы обратиться к конкретной ячейке, нужен также и номер приписанного к ней "столбца": посылается другой сигнал, типа CAS. Время, пока контроллер ждет ответа, - это тоже тайминг оперативной памяти. Он называется CAS Latency. И это еще не все. Некоторые IT-специалисты предпочитают интерпретировать такое явление, как CAS Latency, несколько иначе. Они полагают, что этот параметр указывает, сколько должно пройти единичных тактов в процессе обработки сигналов не от контроллера, а от процессора. Но, как отмечают эксперты, речь в обоих случаях, в принципе, идет об одном и том же.

Контроллер, как правило, работает с одной и той же "строкой", на которой расположена ячейка, не один раз. Однако, прежде чем обратиться к ней повторно, он должен закрыть предыдущую сессию запроса. И только после этого возобновлять работу. Временной интервал между завершением и новым вызовом строки - это тоже тайминг. Называется он RAS Precharge. Уже третий по счету. На этом все? Нет.

Поработав со строкой, контроллер должен, как мы помним, закрыть предыдущую сессию запроса. Временной интервал между активацией доступа к строке и его закрытием - это тоже тайминг оперативной памяти. Его наименование - Active to Precharge Delay. В принципе, теперь все.

Мы насчитали, таким образом, 4 тайминга. Соответственно, записываются они всегда в виде четырех цифр, например, 2-3-3-6. Кроме них, к слову, есть еще один распространенный параметр, которым характеризуется оперативная память компьютера. Речь идет о значении Command Rate. Оно показывает, какое минимальное время тратит контроллер на то, чтобы переключиться от одной команды к другой. То есть, если для CAS Latency значение - 2, то временная задержка между запросом от процессора (контролера) и ответом модуля памяти составит 4 такта.

Тайминги: порядок расположения

Каков порядок расположения в этом числовом ряду каждого из таймингов? Он практически всегда (и это своего рода отраслевой "стандарт") таков: первая цифра - это CAS Latency, вторая - RAS to CAS Delay, третья - RAS Precharge и четвертая - Active to Precharge Delay. Как мы уже сказали выше, иногда используется параметр Command Rate, его значение пятое в ряду. Но если для четырех предыдущих показателей разброс цифр может быть достаточно большим, то для CR возможно, как правило, только два значения - T1 или T2. Первый означает, что время с момента, когда память активируется, до наступления ее готовности отвечать на запросы должен пройти 1 такт. Согласно второму - 2.

О чем говорят тайминги?

Как известно, объем ОЗУ - один из ключевых показателей производительности этого модуля. Чем он больше - тем лучше. Другой важный параметр - это частота оперативной памяти. Здесь тоже все однозначно. Чем она выше, тем ОЗУ будет работать быстрее. А что с таймингами?

В отношении них закономерность иная. Чем меньше значения каждого из четырех таймингов - тем лучше, тем производительнее память. И тем быстрее, соответственно, работает компьютер. Если у двух модулей с одинаковой частотой разные тайминги оперативной памяти, то и их производительность будет отличаться. Как мы уже определили выше, нужные нам величины выражаются в тактах. Чем их меньше, тем, соответственно, быстрее процессор получает ответ от модуля ОЗУ. И тем скорее он может "воспользоваться" такими ресурсами, как частота оперативной памяти и ее объем.

"Заводские" тайминги или свои?

Большинство пользователей ПК предпочитает использовать те тайминги, которые установлены еще на конвейере (либо в опциях материнской платы выставлена автонастройка). Однако на многих современных компьютерах есть возможности для того, чтобы выставить нужные параметры вручную. То есть, если нужны более низкие значения - их, как правило, можно проставить. Но как изменить тайминги оперативной памяти? Причем сделать это так, чтобы система работала стабильно? А еще, быть может, есть случаи, при которых лучше выбрать увеличенные значения? Как выставить тайминги оперативной памяти оптимальным образом? Сейчас мы попробуем дать ответы на эти вопросы.

Настраиваем тайминги

Заводские значения таймингов прописываются в специально отведенной области микросхемы ОЗУ. Называется она SPD. Используя данные из нее, система BIOS адаптирует оперативную память к конфигурации материнской платы. Во многих современных версиях BIOS настройки таймингов, выставленные по умолчанию, можно корректировать. Практически всегда это осуществляется программным методом - через интерфейс системы. Изменение значений как минимум одного тайминга доступно в большинстве моделей материнских плат. Есть, в свою очередь, производители, которые допускают тонкую настройку модулей ОЗУ при задействовании гораздо большего количества параметров, чем четыре указанных выше типа.

Чтобы войти в область нужных настроек в BIOS, нужно, зайдя в эту систему (клавиша DEL сразу после включения компьютера), выбрать пункт меню Advanced Chipset Settings. Далее в числе настроек находим строку DRAM Timing Selectable (может звучать несколько по-другому, но похоже). В нем отмечаем, что значения таймингов (SPD) будут выставляться вручную (Manual).

Как узнать тайминг оперативной памяти, установленный в BIOS по умолчанию? Для этого мы находим в соседствующих настройках параметры, созвучные CAS Latency, RAS to CAS, RAS Precharge и Active To Precharge Delay. Конкретные значения таймингов, как правило, зависят от типа модулей памяти, установленных на ПК.

Выбирая соответствующие опции, можно задавать значения таймингов. Эксперты рекомендуют понижать цифры очень постепенно. Следует, выбрав желаемые показатели, перезагружаться и тестировать систему на предмет устойчивости. Если компьютер работает со сбоями, нужно вернуться в BIOS и выставить значения на несколько уровней выше.

Оптимизация таймингов

Итак, тайминги оперативной памяти - какие лучше значения для них выставлять? Почти всегда оптимальные цифры определяются в ходе практических экспериментов. Работа ПК связана не только с качеством функционирования модулей ОЗУ, и далеко не только скоростью обмена данными между ними и процессором. Важны многие другие характеристики ПК (вплоть до таких нюансов, как система охлаждения компьютера). Поэтому практическая результативность изменения таймингов зависит от конкретной программно-аппаратной среды, в которой пользователь производит настройку модулей ОЗУ.

Общую закономерность мы уже назвали: чем ниже значения таймингов, тем выше скорость работы ПК. Но это, конечно, идеальный сценарий. В свою очередь, тайминги с пониженными значениями могут пригодиться при "разгоне" модулей материнской платы - искусственном завышении ее частоты.

Дело в том, что если придать микросхемам ОЗУ ускорение в ручном режиме, задействовав слишком большие коэффициенты, то компьютер может начать работать нестабильно. Вполне возможен сценарий, при котором настройки таймингов будут выставлены настолько некорректно, что ПК и вовсе не сможет загрузиться. Тогда, скорее всего, придется "обнулять" настройки BIOS аппаратным методом (с высокой вероятностью обращения в сервисный центр).

В свою очередь, более высокие значения для таймингов могут, несколько замедлив работу ПК (но не настолько, чтобы скорость функционирования была доведена до режима, предшествовавшего "разгону"), придать системе стабильности.

Некоторыми IT-экспертами подсчитано, что модули ОЗУ, обладающие CL в значении 3, обеспечивают примерно на 40 % меньшую задержку в обмене соответствующими сигналами, чем те, где CL равен 5. Разумеется, при условии, что тактовая частота и на том, и на другом одинаковая.

Дополнительные тайминги

Как мы уже сказали, в некоторых современных моделях материнских плат есть возможности для очень тонкой настройки работы ОЗУ. Речь, конечно, не идет о том, как увеличить оперативную память - этот параметр, безусловно, заводской, и изменению не подлежит. Однако в предлагаемых некоторыми производителями настройках ОЗУ есть очень интересные возможности, задействуя которые, можно существенно ускорить работу ПК. Мы же рассмотрим те, что относятся к таймингам, которые можно конфигурировать в дополнение к четырем основным. Важный нюанс: в зависимости от модели материнской платы и версии BIOS, названия каждого из параметров могут отличаться от тех, которые мы сейчас приведем в примерах.

1. RAS to RAS Delay

Этот тайминг отвечает за задержку между моментами, когда активизируются строки из разных областей консолидации адресов ячеек ("банков" то есть).

2. Row Cycle Time

Этот тайминг отражает временной интервал, в течение которого длится один цикл в рамках отдельной строки. То есть от момента ее активизации до начала работы с новым сигналом (с промежуточной фазой в виде закрытия).

3. Write Recovery Time

Данный тайминг отражает временной интервал между двумя событиями - завершением цикла записи данных в память и началом подачи электросигнала.

4. Write To Read Delay

Данный тайминг показывает, сколько должно пройти времени между завершением цикла записи и моментом, когда начинается чтение данных.

Во многих версиях BIOS также доступен параметр Bank Interleave. Выбрав его, можно настроить работу процессора так, чтобы он обращался к тем самым "банкам" ОЗУ одновременно, а не по очереди. По умолчанию этот режим функционирует автоматически. Однако можно попробовать выставить параметр типа 2 Way или 4 Way. Это позволит задействовать 2 или 4, соответственно, "банка" одновременно. Отключение режима Bank Interleave используется довольно редко (это, как правило, связано с диагностикой ПК).

Настройка таймингов: нюансы

Назовем некоторые особенности, касающиеся работы таймингов и их настройки. По мнению некоторых IT-специалистов, в ряду из четырех цифр наибольшее значение имеет первая, то есть тайминг CAS Latency. Поэтому, если у пользователя немного опыта в "разгоне" модулей ОЗУ, эксперименты, возможно, следует ограничить выставлением значений только для первого тайминга. Хотя эта точка зрения не является общепринятой. Многие IT-эксперты склонны считать, что три других тайминга не менее значимы с точки зрения скорости взаимодействия между ОЗУ и процессором.

В некоторых моделях материнских плат в BIOS можно настроить производительность микросхем оперативной памяти в нескольких базовых режимах. По сути, это выставление значений таймингов по шаблонам, допустимым с точки зрения стабильной работы ПК. Эти опции обычно соседствуют с параметром Auto by SPD, а режимы, о которых идет речь, - Turbo и Ultra. Первый подразумевает умеренное ускорение, второй - максимальное. Эта возможность может быть альтернативой выставлению таймингов вручную. Похожие режимы, к слову, есть во многих интерфейсах усовершенствованной системы BIOS - UEFI. Во многих случаях, как отмечают эксперты, при включении опций Turbo и Ultra достигается в достаточной мере высокая производительность ПК, а его работа при этом стабильна.

Такты и наносекунды

Реально ли выразить тактовые циклы в секундах? Да. И для этого существует очень простая формула. Такты в секундном выражении считаются делением единицы на фактическую тактовую частоту ОЗУ, указываемую производителем (правда, этот показатель, как правило, нужно делить на 2).

То есть, например, если мы хотим узнать такты, формирующие тайминги оперативной памяти DDR3 или 2, то мы смотрим на ее маркировку. Если там указана цифра 800, то фактическая частота ОЗУ будет равна 400 МГЦ. Это значит, что длительность такта составит значение, получаемое в результате деления единицы на 400. То есть 2,5 наносекунды.

Тайминги для модулей DDR3

Одни из самых современных модулей ОЗУ - микросхемы типа DDR3. Некоторые специалисты считают, что в отношении них такие показатели, как тайминги, имеют гораздо меньшее значение, чем для чипов предыдущих поколений - DDR 2 и более ранних. Дело в том, что эти модули, как правило, взаимодействуют с достаточно мощными процессорами (такими как, например, Intel Core i7), ресурсы которых позволяют не столь часто обращаться к ОЗУ. Во многих современных чипах от Intel, так же, как и в аналогичных решениях от AMD, есть достаточная величина собственного аналога ОЗУ в виде L2- и L3-кэша. Можно сказать, что у таких процессоров есть свой объем оперативной памяти, способный выполнять значительный объем типовых для ОЗУ функций.

Таким образом, работа с таймингами при использовании модулей DDR3, как мы выяснили, - не самый главный аспект "разгона" (если мы решим ускорить производительность ПК). Гораздо большее значение для таких микросхем имеют как раз-таки параметры частоты. Вместе с тем, модули ОЗУ вида DDR2 и даже более ранних технологических линеек сегодня все еще ставятся на компьютеры (хотя, конечно, повсеместное использование DDR3, по оценке многих экспертов, - более чем устойчивый тренд). И потому работа с таймингами может пригодиться очень большому количеству пользователей.

Данный материал продолжает цикл статей, посвящённых выбору оверклокерской памяти для систем, основанных на перспективных процессорах линейки Intel Core 2 Duo. В наших предыдущих материалах мы исследовали быструю и дорогую память класса PC2-8000 и даже более скоростную, теперь же пришёл черёд ознакомиться и с менее элитной памятью класса DDR2-800 SDRAM, иное название – PC2-6400.

В первую очередь отметим, что именно DDR2-800 SDRAM в большинстве случаев следует считать лучшим выбором для использования в платформах, основанных на процессоре Core 2 Duo. Как было показано нами в статье "Выбор памяти для платформы Core 2 Duo", наивысшую производительность в разогнанных системах можно получить при синхронном тактовании процессорной шины и шины памяти. А если учесть, что наиболее типичный разгон процессоров с ядром Conroe происходит при частотах FSB порядка 400 МГц, то именно оверклокерскую DDR2-800 SDRAM можно рекомендовать для приобретения большинству энтузиастов. Тем более что, как показывает практика, многие модули памяти PC2-6400, оказываются, способны не только на работу при частоте 800 МГц с достаточно агрессивными таймингами, но и зачастую могут быть разогнаны до более высоких скоростей при некотором увеличении задержек.

Конечно, учитывая обнаруженную нами ранее универсальность быстрых модулей, отрицать возможность их эффективного применения в разогнанных системах не следует. Как показали тесты, быстрые оверклокерские модули, рассчитанные на эксплуатацию при частоте 1 ГГц и выше, способны функционировать и с достаточно агрессивными таймингами при частотах около 800 МГц. Однако не следует упускать из виду важный ценовой фактор. Модули PC2-6400 SDRAM стоят ощутимо дешевле гигагерцовой и более быстрой памяти. Именно поэтому такие модули оказываются наиболее популярными среди основной массы оверклокеров.

Надо сказать, что высокая эффективность синхронного тактования процессорной шины и шины памяти – не единственный аргумент в пользу оверклокерских DIMM со средней скоростью. Проведённые нами тесты выявили, что далеко не все LGA775 материнские платы, совместимые с процессорами Core 2 Duo, способны обеспечить стабильное функционирование модулей памяти при частотах около 1 ГГц и выше. Например, определённые проблемы возникают у плат на базе набора логики i975X, в частности, у популярной среди оверклокеров ASUS P5W DH Deluxe. В результате, PC2-8000 и более быстрая память может быть полноценно использована и реально востребована только в системах на базе набора логики Intel P965, что значительно сужает сферу применимости такой высокочастотной памяти.

Кстати, отчасти именно поэтому тесты оверклокерской DDR2 SDRAM в платформах на базе Core 2 Duo мы проводим, используя материнскую плату ASUS P5B Deluxe, в основе которой лежит набор логики Intel P965 Express. Данная системная плата даёт возможность раскрыть потенциал памяти в Core 2 Duo системах наилучшим образом, поскольку более новый чипсет от Intel лучше оптимизирован для работы со скоростной DDR2 SDRAM. Вместе с этим следует отметить, что в Socket AM2 системах DDR2 память обычно разгоняется ещё лучше. Но, по озвученным в предыдущих частях нашего тестирования причинам, в настоящем материале нас интересует эксплуатация оверклокерской DDR2 SDRAM именно в системах с процессором Core 2 Duo.

К вышесказанному остаётся добавить то, что контроллер памяти нового набора логики Intel P965 имеет ряд особенностей по сравнению с предшествующими и конкурирующими контроллерами памяти. Дело в том, что при разработке этого нового чипсета инженеры уделили внимание наделению контроллера памяти значительной интеллектуальностью: в нём впервые реализованы алгоритмы внеочередного исполнения команд, целью которых является более эффективное использование открытых в памяти страниц. Это, в конечном итоге, позволяет повысить КПД полосы пропускания DDR2 SDRAM и снизить латентности при работе с данными. Таким образом, контроллер памяти iP965 во многом отличается по свойствам и своей архитектуре от аналогичных блоков, встроенных в другие процессоры и чипсеты.

Возвращаясь к основной цели данного материала, состоящей в тестировании двухгигабайтных комплектов оверклокерскиx модулей памяти PC2-6400 SDRAM, напомним состав используемой нами тестовой системы:
Процессор Intel Core 2 Extreme X6800 (LGA775, 2.93GHz, 4MB L2);
Материнская плата ASUS P5B Deluxe (LGA775, Intel P965 Express);
Графическая карта: PowerColor X1900 XTX 512MB (PCI-E x16);
Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150);
Операционная система: Microsoft Windows XP SP2 с DirectX 9.0c.

Набор тестов, который мы употребляли для проверки стабильности памяти, был стандартен и включал три приложения: Memtest86, S&M и Prime95. Исследование характеристик памяти проводилось при штатном для них напряжении питания, указанном производителем модулей DDR2 SDRAM.

Corsair TWIN2X2048-6400C4

Компания Corsair – постоянный участник всех тестирований оверклокерской памяти, проводимых нашим сайтом. Это совершенно неудивительно, так как продукты этого производителя разнообразны как по своей стоимости, так и по характеристикам. Надо сказать, что Corsair предлагает энтузиастам два варианта наборов модулей общей ёмкостью 2 Гбайта со штатной частотой 800 МГц: TWIN2X2048-6400С3 и TWIN2X2048-6400С4. Первый вариант является более дорогим и рассчитан на работу при таймингах 3-4-3-9, в то время как второй использует набор задержек 4-4-4-12. Нам на тесты достался более демократичный с точки зрения цены вариант с менее агрессивными таймингами, который к тому же более доступен в розничной продаже.

Рассматриваемый комплект модулей Corsair TWIN2X2048-6400С4 состоит из двух идентичных "линеек" ёмкостью по одному гигабайту, каждая из которых имеет собственный артикул CM2X1024-6400С4. Согласно информации производителя, штатным режимом для этих модулей является работа при частоте 800 МГц с таймингами 4-4-4-12 и 2T Command Rate при напряжении питания 2.1 В.

Сразу хочется заметить, что комплект Corsair TWIN2X2048-6400С4 можно считать близким родственником рассмотренного ранее комплекта Corsair TWIN2X2048-8500С5. И дело тут не только во внешнем сходстве, хотя отрицать его, конечно, нельзя. Действительно, как и многие другие модули компании Corsair для оверклокеров, TWIN2X2048-6400С4 закрыты с двух сторон привычными штампованными алюминиевыми пластинами, анодированными в чёрный цвет, поверх которых наклеены наклейки с логотипом производителя и характеристиками продукта. Основной же признак родства между Corsair TWIN2X2048-6400С4 и рассмотренным ранее изделием спрятан как раз под этими радиаторами – и те, и другие модули основываются на одних и тех же чипах производства Micron. Некоторое же отличие в характеристиках Corsair TWIN2X2048-6400С4 от более быстрого и дорогого продукта обуславливается, главным образом, напряжением питания, составляющим 2.1 В против 2.2 В у модулей, ориентированных на работу при частоте 1066 МГц.

Стикеры, приклеенные на модули, содержат сведения об их артикуле, объёме, штатной частоте и задержках. Хочется обратить внимание на тот факт, что протестированные нами модули имеют номер ревизии 1.2, что также нашло отражение на наклейках. Отличия данной версии заключаются в том, что модули сертифицированы для работы в SLI системах, суть имеют поддержку продвигаемой компанией NVIDIA технологии EPP (Enhanced Performance Profile).

Всё это хорошо видно при просмотре данных, хранящихся в SPD.

Для совместимости с материнскими платами в стандартную область SPD занесены данные о двух режимах работы: с таймингами 4-4-4-13 при частоте 533 МГц и с таймингами 5-5-5-18 при частоте 800 МГц. Однако эти цифры имеют мало общего с тем, на что в реальности способны модули из комплекта Corsair TWIN2X2048-6400С4. Их возможности, согласно мнению производителя, следует смотреть в EPP области, используемой для автоматического конфигурирования параметров памяти системами, построенными на системных платах с чипсетами семейства NVIDIA nForce 500. Здесь-то и упоминается режим DDR2-800 с таймингами 4-4-4-12, который, согласно имеющейся в EPP информации, работоспособен и при напряжении в 2.0 В. Кроме того, инженеры Corsair не постеснялись и продекларировать в EPP возможность эксплуатации модулей Corsair TWIN2X2048-6400С4 при частоте 1066 МГц с таймингами 5-5-5-15 и при напряжении в 2.2 В. Иными словами, рассматриваемые нами сегодня модули PC2-6400 от Corsair, оказались аналогичны Corsair TWIN2X2048-8500С5 не только по используемой элементной базе: их полную идентичность не скрывает и сам производитель: всё видно в SPD/EPP невооружённым глазом.

Интрига получилась интересной. Пока что мы получили несколько достаточно явных указаний на то, что комплекты памяти Corsair TWIN2X2048-6400С4 и Corsair TWIN2X2048-8500С5 должны быть одинаковы. Подтвердится ли это на практике, особенно если принять во внимание, что рассматриваемые сегодня модули памяти дешевле TWIN2X2048-8500С5 более чем на $100? Посмотрите на график, где приводятся полученные нами в тестах наибольшие значения частот, при которых исследуемая память сохраняет полную стабильность.

Corsair TWIN2X2048-6400С4 в практическом использовании, действительно, оказывается очень похожа на гораздо более дорогую память. Хотя некоторое отставание от Corsair TWIN2X2048-8500С5 всё-таки присутствует, списать его можно на меньшее штатное напряжение рассматриваемых модулей памяти. Иными словами, Corsair TWIN2X2048-6400С4 – прекрасная память, которая запросто может выступить и в роли модулей PC2-8500 SDRAM. При таймингах 5-5-5-15 она, действительно, с запасом покоряет частоту в 1067 МГц. Что же касается штатных задержек, то при их установке Corsair TWIN2X2048-6400С4 стабильно работает на частотах, достигающих 950 МГц.

Crucial Ballistix BL2KIT12864AA804

В наших тестах двухгигабайтных комплектов PC2-6400 SDRAM решила принять участие компания Crucial, предоставившая нам на тесты свою пару модулей памяти, продаваемую под торговой маркой Ballistix. Так как компания Crucial является дочерним предприятием Micron, в настоящее время оверклокерская DDR2 память Crucial Ballistix имеет добрую славу. Ведь именно модули памяти, построенные на чипах Micron, бьют сегодня все рекорды по разгону.

Присланный нам на тесты комплект Crucial Ballistix BL2KIT12864AA804 состоит из двух гигабайтных модулей, поставляемых в весьма оригинальной картонной упаковке. Штатный режим работы этих модулей такой же, как и у многих конкурирующих продуктов. Они рассчитаны на работу при частоте 800 МГц с таймингами 4-4-4-12 при 2T Command Rate. Рекомендованное производителем напряжение питания при этом увеличено до 2.2 В.

Модули, входящие в комплект Crucial Ballistix PC2-8000, выполнены на оригинальной чёрной печатной плате и снабжены стандартными штампованными алюминиевыми радиаторами с анодированием жёлтого цвета, закреплёнными посредством двух стальных пружин. На радиаторах чёрной краской нанесены адрес сайта компании-производителя crucial.com и название серии Ballistix. Никаких сведений о характеристиках на самих модулях нет, имеется лишь небольшая этикетка с артикулом, по которому на сайте производителя можно определить, что это за модули.

Информация, прошитая в SPD Crucial Ballistix BL2KIT12864AA804, выглядит весьма скудно.

Здесь есть сведения лишь о штатном режиме этих модулей, декларируемых их спецификацией. К сожалению, это может вызвать некоторые проблемы совместимости при первом запуске памяти в материнской плате, так как указанный в SPD режим работы требует повышения напряжения питания выше штатных для DDR2 1.8 В. То есть, в некоторых случаях, установки параметров памяти по умолчанию без ручного увеличения напряжения Vdimm могут оказаться неработоспособны.

На практике модули Crucial Ballistix BL2KIT12864AA804 показывают весьма примечательные результаты.

В первую очередь хочется отметить, что эта память – единственная в нашем тестировании, которая заработала при наиболее агрессивных таймингах 3-2-2-8. Однако при всех других настройках задержек она проиграла описанной выше памяти от Corsair. Впрочем, при штатных настройках таймингов 4-4-4-12 она смогла обеспечить стабильное функционирование системы при частоте работы шины памяти, лишь чуть-чуть не дотягивающей до 900 МГц. Но в роли PC2-8500 Crucial Ballistix BL2KIT12864AA804 выступить оказалась не в состоянии: при максимально ослабленных задержках и увеличенном напряжении она смогла с трудом перевалить за гигагерцовую отметку, но не более того.

Geil GX22GB6400UDC

Для тестов модулей, рассчитанных на работу в режиме DDR2-800, компания Geil предложила нам один из её топовых продуктов, двухгигабайтный комплект, имеющий артикул GX22GB6400UDC. Принадлежность этой памяти к высокоскоростным продуктам для энтузиастов компания Geil выражает цветом радиаторов, которыми закрыты чипы на модулях. В то время как продукты Geil среднего класса снабжаются неокрашенными алюминиевыми радиаторами, предложения компании для элитных энтузиастов выделяются благодаря кричащему ярко-оранжевому окрасу.

Именно к "оранжевой" серии и относятся полученные нами модули GX22GB6400UDC. Как и другие аналогичные продукты, они рассчитаны на эксплуатацию при частоте 800 МГц с таймингами 4-4-4-12. Что касается напряжения питания, то Geil декларирует достаточно широкий диапазон от 1.8 до 2.3 В.

Помимо цвета, внешне Geil GX22GB6400UDC мало отличаются от других продуктов компании. На стандартные, хоть и цветные, радиаторы наклеен выпуклый логотип производителя и стикер с маркировкой, на котором можно прочесть артикул изделия, его частоту и тайминги.

Надо заметить, что модули Geil GX22GB6400UDC представляют собой несколько необычный продукт не только потому, что производитель не даёт чётких рекомендаций относительно напряжения питания. Странность заключается в том, что использованные в основе модулей чипы лишены маркировки, что не даёт нам возможности выявить их принадлежность. Впрочем, по полученным в тестах результатам видно явно: эти чипы – не от Micron.

Странновато выглядит и содержимое SPD.

Название модулей, занесённое в SPD, почему-то никак не соотносится с их артикулом, а содержит явный намёк на то, что их тайминги должны быть не 4-4-4-12, а 5-5-5-15. С чем это может быть связано, мы не берёмся даже предположить. Что же касается остальной информации в SPD, то она оптимизирована для совместимости с большинством материнских плат.

На практике модули Geil GX22GB6400UDC достигнутыми результатами поразить нас не смогли, хотя мы и проводили тесты при напряжении 2.1 В.

Впрочем, при штатных задержках 4-4-4-12 частота, достигаемая Geil GX22GB6400UDC без потери стабильности, вполне сравнима с результатами конкурентов. Однако рассматриваемые модули не являются универсальными. Дальнейшее увеличение таймингов и (или) напряжения питания не приводит к росту разгонного потенциала этой памяти.

G.Skill F2-6400PHU2-2GBHZ

Компания G.Skill, тайваньский производитель памяти для оверклокеров, пока ещё не может похвастать столь же высокой популярностью, как гранды вроде OCZ или Corsair. Однако эта фирма прикладывает большие усилия для завоевания рынка, в частности, путём участия во всевозможных тестированиях.

У нас на тестах оказался комплект DDR2-800 SDRAM модулей G.Skill F2-6400PHU2-2GBHZ, включающий две "линейки" объёмом 1 Гбайт каждая. Эта память, согласно официальной спецификации, рассчитана на эксплуатацию с таймингами 4-4-4-12 при рабочем напряжении от 2.0 до 2.1 В.

Внешне модули от G.Skill никакими изысками похвастать не могут. Они закрыты стандартными алюминиевыми радиаторами, анодированными в матовый чёрный цвет, на которых наклеен логотип производителя и идентификационный стикер. Эта наклейка содержит данные об артикуле продукта, ёмкости каждого из модулей, частоте, штатных задержках и рекомендованном напряжении.

В SPD модулей G.Skill F2-6400PHU2-2GBHZ можно получить достаточно стандартный набор информации.

Как видим, для достижения максимальной совместимости производитель декларировал два режима: DDR2-533 с таймингами 4-4-4-13 и DDR2-800 с таймингами 5-5-5-18.

Чипы, лежащие в основе G.Skill F2-6400PHU2-2GBHZ, произведены компанией Elpida. Это накладывает определённый отпечаток на полученные нами в практических испытаниях результаты. В первую очередь, следует иметь в виду, что для достижения максимальных частот с модулями, основанными на таких чипах, приходится до предела увеличивать тайминги Write Recovery Time и Row Refresh Cycle Time. К счастью, на производительности они сказываются весьма незначительно.

Что же касается наивысших частот, при которых модули памяти G.Skill F2-6400PHU2-2GBHZ способны работать стабильно, то они несколько расстраивают на фоне результатов, демонстрируемых DIMM на базе чипов от Micron (тесты проводились при напряжении в 2.1 В).

Модули G.Skill F2-6400PHU2-2GBHZ проигрывают конкурентам, построенным на чипах от Micron и при наборе задержек 3-3-3-10 и при таймингах 4-4-4-12. Менее агрессивные тайминги вообще смысла не имеют, при установке задержек 5-5-5-15 частотный потенциал модулей не увеличивается, а ухудшается. Причём, положение не исправляется даже при весьма ощутимом поднятии вольтажа.

Kingston HyperX KHX6400D2LLK2/2G

Компания Kingston, которую по праву можно отнести к числу старейших и авторитетнейших производителей оперативной памяти, предоставила нам на тесты комплект модулей KHX6400D2LLK2/2G общим объёмом 2 Гбайта. Этот комплект относится к серии HyperX, специально разработанной для применения в оверклокерских системах. Данная DDR2 SDRAM, как и все остальные участвующие в этом обзоре модули, рассчитана на работу при частоте 800 МГц с таймингами 4-4-4-12. Рабочее напряжение, декларируемое производителем, составляет 2.0 В.

Хочется отметить, что модули Kingston KHX6400D2LLK2/2G можно отнести к одним из самых красивых, участвующих в тестировании. Хотя для отвода тепла от чипов в них применяются стандартные штампованные алюминиевые пластины, их синий окрас вместе со стильными бело-красными логотипами Kingston, HyperX и DDR2 придают модулям стильный и гармоничный внешний вид. На стикерах, наклеенных на радиаторах, можно прочесть артикул DIMM, неинтересную технологическую информацию и величину их рабочего напряжения, которое в данном случае почему-то обозначено как 1.95 В.

Надо заметить, что в отличие от прочих производителей, Kingston не поленился нанести маркировку комплекта на их упаковку. Соответствующая наклейка более содержательна, чем стикер на модулях. Помимо part number здесь можно почерпнуть информацию о частоте и CAS Latency модулей, входящих в комплект.

SPD модулей содержит достаточно привычную информацию, расходящуюся со спецификацией, но гарантирующую совместимость с широким диапазоном материнских плат.

Что же касается внутренней организации Kingston HyperX KHX6400D2LLK2/2G, то она сильно уступает внешнему виду. К сожалению, производитель в качестве основы для своего продукта выбрал не самые удачные чипы, произведённые компанией Elpida, в результате чего разгонные характеристики рассматриваемых модулей не столь блестящи.

Так, при установке таймингов в 3-3-3-10 комплект Kingston HyperX KHX6400D2LLK2/2G оказывается неспособен даже к функционированию при частоте 600 МГц. Установка же штатных таймингов 4-4-4-12 даёт возможность продемонстрировать близкий к декларируемому в спецификации частотный потенциал, что на фоне результатов других модулей выглядит несколько скудновато. Увеличение задержек до 5-5-5-15 также существенных изменений в общую картину не вносит. Хотя модули оказываются способными к работе на частотах лишь чуть менее 1 ГГц, это сильно хуже результатов модулей, основанных на чипах от Micron.

Mushkin 996523 XP2-6400 DDR2

Решила принять участие в DDR2-800 SDRAM тестировании и компания Mushkin, предоставившая нам двухгигабайтный комплект DIMM с артикулом 996523. Несмотря на то, что продукты Mushkin достаточно редко появляются в обзорах на нашем сайте, это широко известный производитель оверклокерских модулей памяти с большой историей. Так, эта компания была образована ещё в 1994 году. Она представляет собой дочернее предприятие Ramtron International Corporation, имя которой в последнее время всё чаще появляется в заголовках новостей в связи с ферроэлектрической оперативной памятью (FRAM).

Комплект Mushkin 996523 XP2-6400 DDR2 включает два модуля DDR2 SDRAM объёмом по 1 Гбайту каждый. Эта память рассчитана на работу при частоте 800 МГц с таймингами 4-4-3-10 и рабочим напряжением от 1.9 до 2.1 В. Сразу же следует отметить, что, согласно спецификации, данные модули имеют наиболее агрессивные задержки из всех, участвующих в настоящем тестировании. Причём, очевидно, достигается это совсем не за счёт привычного трюка с повышением напряжения питания микросхем.

Среди отличительных черт модулей Mushkin 996523 XP2-6400 DDR2, бросающихся в глаза, следует отметить фирменную конструкцию радиатора, который в данном случае имеет собственное маркетинговое название FrostByte. Впрочем, ничего особенного он собой не представляет, по сути, он состоит из двух штампованных алюминиевых пластин, прижимаемых к чипам стальными зажимами. Единственная их особенность – это несколько нестандартная конфигурация, которая, впрочем, вряд ли позволяет организовать более эффективный, нежели у конкурентов, отвод тепла.

На окрашенной в чёрный цвет поверхности радиаторов нанесён цветной логотип производителя и наклеена этикетка, сообщающая нам некоторые сведения о памяти. На этом стикере напечатан артикул модулей, их частота и штатные тайминги.

Таким образом, отличия в номинальных характеристиках Mushkin 996523 XP2-6400 DDR2 от подобных конкурирующих продуктов объясняются, скорее всего, специальным отбором чипов. Кстати, в основе рассматриваемых модулей лежат отлично зарекомендовавшие себя микросхемы от Micron, такие же, как и применяемые в лучших DDR2 продуктах от Corsair и Crucial.

Содержимое SPD модулей Mushkin 996523 XP2-6400 DDR2 вполне стандартно для оверклокерских продуктов.

Здесь хранится информация о режимах работы памяти при частоте 667 и 800 МГц, необходимая для совместимости.

На практике модули памяти Mushkin 996523 XP2-6400 DDR2 очень хорошо проявляют себя. Они выделяются даже на фоне конкурирующих продуктов на чипах от Micron, не говоря уже о "медленной" памяти с микросхемами Elpida. На графике ниже приведены конкретные цифры, полученные при напряжении 2.1 В.

При таймингах 4-4-4-12 предельная частота, на которой Mushkin 996523 XP2-6400 DDR2 сохраняют способность к стабильному функционированию, лишь немного не дотягивает до 1 ГГц. Зато установка задержек в 5-5-5-15 даёт возможность памяти от Mushkin покорить частоту свыше 1.1 ГГц, что позволяет причислить эти модули к числу наиболее удачных DDR2-800 SDRAM комплектов общей ёмкостью 2 Гбайта.

Выводы

На протяжении нескольких последних материалов, где речь шла про память для платформы Conroe, мы методично убеждали наших читателей в том, что для оверклокерских систем вполне достаточно DDR2-800 SDRAM, а более быстрая память может заинтересовать лишь небольшую прослойку экстремальных апологетов. Теперь, после проведённого тестирования, аргументация стала ещё более убедительной. Дело в том, что правильно выбранная оверклокерская PC2-6400 SDRAM практически не уступает более быстрой PC2-8000 памяти и по своему частотному потенциалу. Удачная DDR2-800 память, рассчитанная на работу при такой частоте с таймингами 4-4-4-12, при ослаблении задержек легко может выступить и в роли DDR2-1000 или даже DDR2-1067 SDRAM. Зато, приобретая при этом более медленные с точки зрения официальных спецификаций модули памяти PC2-6400, можно получить определённый выигрыш с финансовой точки зрения. Ибо рассмотренные сегодня комплекты модулей оперативной памяти однозначно дешевле, чем аналогичные по объёму наборы, ориентированные на функционирование на постгигагерцовых рубежах.

Таким образом, главное умение рачительного оверклокера при выборе DDR2 SDRAM должно заключаться в понимании того, какая память из DDR2-800 SDRAM козырная, а какая – нет. Многочисленные испытания, проведённые в нашей лаборатории, выявили следующее эмпирическое правило: наилучшим разгонным потенциалом обладают модули, построенные на базе чипов от Micron. Именно такую память мы и рекомендуем к приобретению в первую очередь.

Что же касается более конкретных советов, то из тех двухгигабайтных комплектов памяти, которые попали в данное тестирование, мы бы смело рекомендовали два продукта: Corsair TWIN2X2048-6400С4 и Mushkin 996523 XP2-6400 DDR2. Эти изделия прекрасно работают как при штатных частотах и таймингах, так и предоставляют внушительный потенциал для разгона, что даёт им возможность соперничать с PC2-8000 SDRAM.

Разгоняя компьютер, мы больше внимания уделяем таким компонентам как процессор и видеокарта, а память, как не менее важную составляющую, иногда обходим стороной. А ведь именно тонкая настройка подсистемы памяти может дополнительно увеличить скорость рендеринга сцены в трехмерных редакторах, уменьшить время на компрессию домашнего видеоархива или прибавить пару кадров за секунду в любимой игре. Но даже если вы не занимаетесь оверклокингом, дополнительная производительность никогда не помешает, тем более что при правильном подходе риск минимален.

Уже прошли те времена, когда доступ к настройкам подсистемы памяти в BIOS Setup был закрыт от лишних глаз. Сейчас их столько, что даже подготовленный пользователь может растеряться при таком разнообразии, не говоря уже о простом "юзере". Мы постараемся максимально разъяснить действия, необходимые для повышения производительности системы посредством простейших настроек основных таймингов и, при необходимости, некоторых других параметров. В данном материале мы рассмотрим платформу Intel с памятью DDR2 на базе чипсета от той же компании, и основной целью будет показать не то, насколько поднимется быстродействие, а то, как именно его необходимо поднять. Что касается альтернативных решений, то для памяти стандарта DDR2 наши рекомендации практически полностью применимы, а для обычной DDR (меньшие частота и задержки, и большее напряжение) есть некоторые оговорки, но в целом принципы настройки те же.

Как известно, чем меньше задержки, тем меньше латентность памяти и, соответственно, выше скорость работы. Но не стоит сразу же и необдуманно уменьшать параметры памяти в BIOS, так как это может привести к совершенно обратным результатам, и вам придется либо возвращать все настройки на место, либо воспользоваться Clear CMOS. Все необходимо проводить постепенно - изменяя каждый параметр, перезагружать компьютер и тестировать скорость и стабильность системы, и так каждый раз, пока не будут достигнуты стабильные и производительные показатели.

На данный момент времени самым актуальным типом памяти является DDR2-800, но он появился недавно и пока только набирает обороты. Следующий тип (вернее, предыдущий), DDR2-667, является одним из самых распространенных, а DDR2-533 уже начинает сходить со сцены, хотя и присутствует на рынке в должном количестве. Память DDR2-400 нет смысла рассматривать, так как она практически уже исчезла из обихода. Модули памяти каждого типа имеют определенный набор таймингов, а для большей совместимости с имеющимся разнообразием оборудования они немного завышены. Так, в SPD модулей DDR2-533 производители обычно указывают временные задержки 4-4-4-12 (CL-RCD-RP-RAS), в DDR2-667 - 5-5-5-15 и в DDR2-800 - 5-5-5-18, при стандартном напряжении питания 1,8-1,85 В. Но ничто не мешает их снизить для увеличения производительности системы, а при условии поднятия напряжения всего до 2-2,1 В (что для памяти будет в пределах нормы, но охлаждение все же не помешает) вполне возможно установить еще более агрессивные задержки.

В качестве тестовой платформы для наших экспериментов мы выбрали следующую конфигурацию:

  • Материнская плата: ASUS P5B-E (Intel P965, BIOS 1202)
  • Процессор: Intel Core 2 Extreme X6800 (2,93 ГГц, 4 Мб кэш, FSB1066, LGA775)
  • Система охлаждения: Thermaltake Big Typhoon
  • Видеокарта: ASUS EN7800GT Dual (2хGeForce 7800GT, но использовалось только "половина" видеокарты)
  • HDD: Samsung HD120IJ (120 Гб, 7200 об/мин, SATAII)
  • Привод: Samsung TS-H552 (DVD+/-RW)
  • Блок питания: Zalman ZM600-HP

В качестве оперативной памяти использовалось два модуля DDR2-800 объемом 1 Гб производства Hynix (1GB 2Rx8 PC2-6400U-555-12), благодаря чему появилась возможность расширить количество тестов с различными режимами работы памяти и комбинациями таймингов.

Приведем перечень необходимого ПО, позволяющего проверить стабильность системы и зафиксировать результаты настроек памяти. Для проверки стабильной работы памяти можно использовать такие тестовые программы как Testmem, Testmem+, S&M, Prime95 , в качестве утилиты настройки таймингов "на лету" в среде Windows применяется MemSet (для платформ Intel и AMD) и A64Info (только для AMD) . Выяснение оправданности экспериментов над памятью можно осуществить архиватором WinRAR 3.70b (имеется встроенный бенчмарк), программой SuperPI , рассчитывающая значение числа Пи, тестовым пакетом Everest (также есть встроенный бенчмарк), SiSoft Sandra и т.д.

Основные же настройки осуществляются в BIOS Setup. Для этого необходимо во время старта системы нажать клавишу Del, F2 или другую, в зависимости от производителя платы. Далее ищем пункт меню, отвечающий за настройки памяти: тайминги и режим работы. В нашем случае искомые настройки находились в Advanced/Chipset Setting/North Bridge Configuration (тайминги) и Advanced/Configure System Frequency (режим работы или, проще говоря, частота памяти). В BIOS"е других плат настройки памяти могут находиться в "Advanced Chipset Features" (Biostar), "Advanced/Memory Configuration" (Intel), "Soft Menu + Advanced Chipset Features" (abit), "Advanced Chipset Features/DRAM Configuration" (EPoX), "OverClocking Features/DRAM Configuration" (Sapphire), "MB Intelligent Tweaker" (Gigabyte, для активации настроек необходимо в главном окне BIOS нажать Ctrl+F1 ) и т.д. Напряжение питания обычно изменяется в пункте меню, отвечающем за оверклокинг и обозначается как "Memory Voltage", "DDR2 OverVoltage Control", "DIMM Voltage", "DRAM Voltage", "VDIMM" и т.д. Также у различных плат от одного и того же производителя настройки могут отличаться как по названию и размещению, так и по количеству, так что в каждом отдельном случае придется обратиться к инструкции.

Если нет желания поднимать рабочую частоту модулей (при условии возможностей и поддержки со стороны платы) выше ее номинальной, то можно ограничиться уменьшением задержек. Если да, то вам скорее придется прибегнуть к повышению напряжения питания, равно как и при снижении таймингов, в зависимости от самой памяти. Для изменения настроек достаточно необходимые пункты перевести из режима "Auto" в "Manual". Нас интересуют основные тайминги, которые обычно находятся вместе и называются следующим образом: CAS# Latency Time (CAS, CL, Tcl, tCL), RAS# to CAS# Delay (RCD, Trcd, tRCD), RAS# Precharge (Row Precharge Time, RP, Trp, tRP) и RAS# Activate to Precharge (RAS, Min.RAS# Active Time, Cycle Time, Tras, tRAS). Также есть еще один параметр - Command Rate (Memory Timing, 1T/2T Memory Timing, CMD-ADDR Timing Mode) принимающий значение 1T или 2T (в чипсете AMD RD600 появилось еще одно значение - 3Т) и присутствующий на платформе AMD или в чипсетах NVidia (в логике от Intel он заблокирован в значении 2T). При снижении этого параметра до единицы увеличивается быстродействие подсистемы памяти, но снижается максимально возможная ее частота. При попытке изменить основные тайминги на некоторых материнских платах могут ожидать "подводные камни" - отключив автоматическую настройку, мы тем самым сбрасываем значения подтаймингов (дополнительные тайминги, влияющие как на частоту, так и на быстродействие памяти, но не так значительно, как основные), как, например, на нашей тестовой плате. В этом случае придется воспользоваться программой MemSet (желательно последней версии) и просмотреть для каждого режима работы памяти значения подтаймингов (субтаймингов), чтобы установить аналогичные в BIOS"e.

Если названия задержек не совпадут, то тут хорошо проявляет себя "метод научного тыка". Незначительно изменяя дополнительные настройки в BIOS Setup, проверяем программой, что, где и как изменилось.

Теперь для памяти, функционирующей на частоте 533 МГц, можно попытаться вместо стандартных задержек 4-4-4-12 (или какого-либо другого варианта) установить 3-3-3-9 или даже 3-3-3-8. Если с такими настройками система не стартует, поднимаем напряжение на модулях памяти до 1,9-2,1 В. Выше не рекомендуется, даже при 2,1 В желательно использовать дополнительное охлаждение памяти (простейший вариант - направить на них поток воздуха от обычного кулера). Но сперва необходимо провести тесты при стандартных настройках, например в очень чувствительном к таймингам архиваторе WinRAR (Tools/Benchmark and hardware test). После изменения параметров проверяем снова и, если результат удовлетворяет, оставляем как есть. Если нет, как это произошло в нашем тестировании, то при помощи утилиты MemSet в среде Windows (эта операция может привести либо к зависанию системы, либо, что еще хуже, полной неработоспособности ее) или же средствами BIOS Setup поднимаем на единицу RAS# to CAS# Delay и снова тестируем. После можно попытаться уменьшить на единицу параметр RAS# Precharge, что немного увеличит быстродействие.

Тоже самое проделываем для памяти DDR2-667: вместо значений 5-5-5-15 выставляем 3-3-3-9. При проведении тестов нам пришлось также увеличить RAS# to CAS# Delay, иначе быстродействие ничем не отличалось от стандартных настроек.

Для системы, использующей DDR2-800, задержки можно уменьшить до 4-4-4-12 или даже 4-4-3-10, в зависимости от конкретных модулей. В любом случае подбор таймингов сугубо индивидуален, и дать конкретные рекомендации достаточно сложно, но приведенные примеры вполне могут помочь вам в тонкой настройке системы. И не забываем о напряжении питания.

В итоге мы провели тестирование с восемью различными вариантами и комбинациями режимов работы памяти и ее задержками, а также включили в тесты результаты оверклокерской памяти, - Team Xtreem TXDD1024M1066HC4, работавшей на эффективной частоте 800 МГц при таймингах 3-3-3-8. Итак, для режима 533 МГц вышло три комбинации с таймингами 4-4-4-12, 3-4-3-8 и 3-4-2-8, для 667 МГц всего две - 5-5-5-15 и 3-4-3-9, а для режима 800 МГц, как и в первом случае, три - 5-5-5-18, 4-4-4-12 и 4-4-3-10. В качестве тестовых пакетов использовались: подтест памяти из синтетического пакета PCMark05, архиватор WinRAR 3.70b, программа расчета числа Пи - SuperPI и игра Doom 3 (разрешение 1024x768, качество графики High). Латентность памяти проверялась встроенным бенчмарком программы Everest. Все тесты проходили в среде Windows XP Professional Edition SP2. Представленные результаты на диаграммах расположены по режимам работы.

Как видите по результатам, разница в некоторых тестах незначительная, а порой даже мизерная. Это обусловлено тем, что системная шина процессора Core 2 Duo, равная 1066 МГц, имеет теоретическую пропускную способность 8,5 Гб/с, что соответствует пропускной способности двухканальной памяти DDR2-533. При использовании более скоростной памяти ограничивающим фактором быстродействия системы становится шина FSB. Уменьшение задержек ведет к росту быстродействия, но не так заметно, как повышение частоты памяти. При использовании в качестве тестового стенда платформы AMD можно было бы наблюдать совсем другую картину, что мы по возможности и сделаем в следующий раз, а пока вернемся к нашим тестам.

В синтетике рост производительности при уменьшении задержек для каждого из режимов составил 0,5% для 533 МГц, 2,3% для 667 МГц и 1% для 800 МГц. Заметен значительный рост производительности при переходе от памяти DDR2-533 к DDR2-667, а вот смена с 667 на DDR2-800 дает уже не такую прибавку скорости. Также память уровнем ниже и с низкими таймингами вплотную приближается к более высокочастотному варианту, но с номинальными настройками. И это справедливо практически для каждого теста. Для архиватора WinRAR, который достаточно чувствителен к изменению таймингов, показатель производительности немного вырос: 3,3% для DDR2-533 и 8,4% для DDR2-667/800. Расчет восьмимиллионного знака числа Пи отнесся к различным комбинациям в процентном соотношении лучше, чем PCMark05, хоть и незначительно. Игровое приложение не сильно жалует DDR2-677 с таймингами 5-5-5-15, и только снижение последних позволило обойти менее скоростную память (которой, как оказалось, все равно, какие тайминги стоят) на два кадра. Настройка памяти DDR2-800 дала прибавку еще в два кадра, а оверклокерский вариант, который имел неплохой разрыв в остальных тестах, не слишком вырвался вперед относительно менее дорогого аналога. Все же, кроме процессора и памяти, есть еще одно звено - видеоподсистема, которая вносит свои коррективы в производительность всей системы в целом. Результат латентности памяти удивил, хотя, если присмотреться к графику, становится ясно, отчего показатели именно такие, какие есть. Падая с ростом частоты и уменьшением таймингов от режима DDR2-533 4-4-4-12, латентность имеет "провал" на DDR2-667 3-4-3-9, а последний режим практически ничем кроме частоты от предыдущего не отличается. И благодаря столь низким задержкам DDR2-667 запросто обходит DDR2-800, которая имеет более высокие значения, но пропускная способность DDR2-800 позволяет в реальных приложениях все же вырваться вперед.

И в заключение хотелось бы сказать, что несмотря на небольшой процент прироста быстродействия (~0,5-8,5), который получается от уменьшения временных задержек, эффект все же присутствует. И даже при переходе с DDR2-533 на DDR2-800 мы получаем прибавку в среднем 3-4%, а в WinRAR более 20. Так что подобный "тюнинг" имеет свои плюсы и позволяет даже без серьезного разгона немного поднять производительность системы.

Оперативная память используется для временного хранения данных, необходимых для работы операционной системы и всех программ. Оперативной памяти должно быть достаточно, если ее не хватает, то компьютер начинает тормозить.

Плата с чипами памяти называется модулем памяти (или планкой). Память для ноутбука, кроме размера планок, ни чем не отличается от памяти для компьютера, поэтому при выборе руководствуйтесь теми же рекомендациями.

Для офисного компьютера достаточно одной планки DDR4 на 4 Гб с частотой 2400 или 2666 МГц (стоит почти одинаково).
Оперативная память Crucial CT4G4DFS824A

Для мультимедийного компьютера (фильмы, простые игры) лучше взять две планки DDR4 с частотой 2666 МГц по 4 Гб, тогда память будет работать в более быстром двухканальном режиме.
Оперативная память Ballistix BLS2C4G4D240FSB

Для игрового компьютера среднего класса можно взять одну планку DDR4 на 8 Гб с частотой 2666 МГц с тем, чтобы в будущем можно было добавить еще одну и лучше если это будет ходовая модель попроще.
Оперативная память Crucial CT8G4DFS824A

А для мощного игрового или профессионального ПК нужно сразу брать набор из 2 планок DDR4 по 8 Гб, при этом будет вполне достаточно частоты 2666 МГц.

2. Сколько нужно памяти

Для офисного компьютера, предназначенного для работы с документами и выхода в интернет, с головой достаточно одной планки памяти на 4 Гб.

Для мультимедийного компьютера, который можно будет использовать для просмотра видео в высоком качестве и нетребовательных игр, вполне хватит 8 Гб памяти.

Для игрового компьютера среднего класса вариантом минимум является 8 Гб оперативки.

Для мощного игрового или профессионального компьютера необходимо 16 Гб памяти.

Больший объем памяти может понадобиться только для очень требовательных профессиональных программ и обычным пользователям не нужен.

Объем памяти для старых ПК

Если вы решили увеличить объем памяти на старом компьютере, то учтите, что 32-разрядные версии Windows не поддерживают более 3 Гб оперативной памяти. То есть, если вы установите 4 Гб оперативной памяти, то операционная система будет видеть и использовать только 3 Гб.

Что касается 64-разрядных версий Windows, то они смогут использовать всю установленную память, но если у вас старый компьютер или есть старый принтер, то на них может не оказаться драйверов под эти операционные системы. В таком случае, перед покупкой памяти, установите 64-х разрядную версию Windows и проверьте все ли у вас работает. Так же рекомендую заглянуть на сайт производителя материнской платы и посмотреть какой объем модулей и общий объем памяти она поддерживает.

Учтите еще, что 64-разрядные операционные системы расходуют в 2 раза больше памяти, например Windows 7 х64 под свои нужды забирает около 800 Мб. Поэтому 2 Гб памяти для такой системы будет мало, желательно не менее 4 Гб.

Практика показывает, что современные операционные системы Windows 7,8,10 полностью раскрываются при объеме памяти 8 Гб. Система становится более отзывчивой, программы быстрее открываются, а в играх исчезают рывки (фризы).

3. Типы памяти

Современная память имеет тип DDR SDRAM и постоянно совершенствуется. Так память DDR и DDR2 уже является устаревшей и может использоваться только на старых компьютерах. Память DDR3 уже не целесообразно использовать на новых ПК, на смену ей пришла более быстрая и перспективная DDR4.

Учтите, что выбранный тип памяти должен поддерживать процессор и материнская плата.

Также новые процессоры, из соображений совместимости, могут поддерживать память DDR3L, которая отличается от обычной DDR3 пониженным напряжением с 1.5 до 1.35 В. Такие процессоры смогут работать и с обычной памятью DDR3, если у вас она уже есть, но производители процессоров это не рекомендуют из-за повышенной деградации контроллеров памяти, рассчитанных на DDR4 с еще более низким напряжением 1.2 В.

Тип памяти для старых ПК

Устаревшая память DDR2 стоит в несколько раз дороже более современной памяти. Планка DDR2 на 2 Гб стоит в 2 раза дороже, а планка DDR2 на 4 Гб в 4 раза дороже планки DDR3 или DDR4 аналогичного объема.

Поэтому, если вы хотите существенно увеличить память на старом компьютере, то возможно более оптимальным вариантом будет переход на более современную платформу с заменой материнской платы и если необходимо процессора, которые будут поддерживать память DDR4.

Подсчитайте во сколько вам это обойдется, возможно выгодным решением будет продать старую материнскую плату со старой памятью и приобрести новые, пусть не самые дорогие, но более современные комплектующие.

Разъемы материнской платы для установки памяти называются слотами.

Каждому типу памяти (DDR, DDR2, DDR3, DDR4) соответствует свой слот. Память DDR3 можно установить только в материнскую плату со слотами DDR3, DDR4 – со слотами DDR4. Материнские платы, поддерживающие старую память DDR2 уже не производят.

5. Характеристики памяти

Основными характеристиками памяти, от которых зависит ее быстродействие, являются частота и тайминги. Скорость работы памяти не оказывает такого сильного влияния на общую производительность компьютера как процессор. Тем не менее, часто можно приобрести более быструю память не на много дороже. Быстрая память нужна прежде всего для мощных профессиональных компьютеров.

5.1. Частота памяти

Частота оказывает наибольшее значение на скорость работы памяти. Но перед ее покупкой необходимо убедиться, что процессор и материнская плата так же поддерживают необходимую частоту. В противном случае реальная частота работы памяти будет ниже и вы просто переплатите за то, что не будет использоваться.

Недорогие материнские платы поддерживают более низкую максимальную частоту памяти, например для DDR4 это 2400 МГц. Материнские платы среднего и высокого класса могут поддерживать память с более высокой частотой (3400-3600 МГц).

А вот с процессорами дело обстоит иначе. Старые процессоры с поддержкой памяти DDR3 могут поддерживать память с максимальной частотой 1333, 1600 или 1866 МГц (в зависимости от модели). Для современных процессоров с поддержкой памяти DDR4 максимально поддерживаемая частота памяти может составлять 2400 МГц или выше.

Процессоры Intel 6-го поколения и выше, а также процессоры AMD Ryzen поддерживают память DDR4 с частотой 2400 МГц или выше. При этом в их модельном ряду есть не только мощные дорогие процессоры, но и процессоры среднего и бюджетного класса. Таким образом, вы можете собрать компьютер на самой современной платформе с недорогим процессором и памятью DDR4, а в будущем поменять процессор и получить высочайшую производительность.

Основной на сегодня является память DDR4 2400 МГц, которая поддерживается наиболее современными процессорами, материнскими платами и стоит столько же как DDR4 2133 МГц. Поэтому приобретать память DDR4 с частотой 2133 МГц сегодня не имеет смысла.

Какую частоту памяти поддерживает тот или иной процессор можно узнать на сайтах производителей:

По номеру модели или серийному номеру очень легко найти все характеристики любого процессора на сайте:

Или просто введите номер модели в поисковой системе Google или Яндекс (например, «Ryzen 7 1800X»).

5.2. Память с высокой частотой

Теперь я хочу затронуть еще один интересный момент. В продаже можно встретить оперативную память гораздо более высокой частоты, чем поддерживает любой современный процессор (3000-3600 МГц и выше). Соответственно, многие пользователи задаются вопросом как же такое может быть?

Все дело в технологии, разработанной компанией Intel, eXtreme Memory Profile (XMP). XMP позволяет памяти работать на более высокой частоте, чем официально поддерживает процессор. XMP должна поддерживать как сама память, так и материнская плата. Память с высокой частотой просто не может существовать без поддержки этой технологии, но далеко не все материнские платы могут похвастаться ее поддержкой. В основном это более дорогие модели выше среднего класса.

Суть технологии XMP заключается в том, что материнская плата автоматически увеличивает частоту шины памяти, благодаря чему память начинает работать на своей более высокой частоте.

У компании AMD существует подобная технология, называемая AMD Memory Profile (AMP), которая поддерживалась старыми материнскими платами для процессоров AMD. Эти материнские платы обычно поддерживали и модули XMP.

Приобретать более дорогую память с очень высокой частотой и материнскую плату с поддержкой XMP есть смысл для очень мощных профессиональных компьютеров, оснащенных топовым процессором. В компьютере среднего класса это будут выброшенные на ветер деньги, так как все упрется в производительность других комплектующих.

В играх частота памяти оказывает небольшое влияние и переплачивать особого смысла нет, достаточно будет взять на 2400 МГц, ну или на 2666 МГц если разница в цене будет небольшая.

Для профессиональных приложений можно взять память с частотой повыше – 2666 МГц или если хотите и позволяют средства на 3000 МГц. Разница в производительности тут больше чем в играх, но не кардинальная, так что загоняться с частотой памяти особого смысла нет.

Еще раз напоминаю, что ваша материнская плата должна поддерживать память требуемой частоты. Кроме того, иногда процессоры Intel начинают работать нестабильно при частоте памяти выше 3000 МГц, а у Ryzen этот предел составляет около 2900 МГц.

Таймингами называются задержки между операциями чтения/записи/копирования данных в оперативной памяти. Соответственно чем эти задержки меньше, тем лучше. Но тайминги оказывают гораздо меньшее влияние на скорость работы памяти, чем ее частота.

Основных таймингов, которые указываются в характеристиках модулей памяти всего 4.

Из них самой главной является первая цифра, которая называется латентность (CL).

Типичная латентность для памяти DDR3 1333 МГц – CL 9, для памяти DDR3 с более высокой частотой – CL 11.

Типичная латентность для памяти DDR4 2133 МГц – CL 15, для памяти DDR4 с более высокой частотой – CL 16.

Не стоит приобретать память с латентностью выше указанной, так как это говорит об общем низком уровне ее технических характеристик.

Обычно, память с более низкими таймингами стоит дороже, но если разница в цене не значительная, то предпочтение следуют отдать памяти с более низкой латентностью.

5.4. Напряжение питания

Память может иметь различное напряжение питания. Оно может быть как стандартным (общепринятым для определенного типа памяти), так и повышенным (для энтузиастов) или наоборот пониженным.

Это особенно важно если вы хотите добавить память на компьютер или ноутбук. В таком случае напряжение новых планок должно быть таким же, как и у имеющихся. В противном случае возможны проблемы, так как большинство материнских плат не могут выставлять разное напряжение для разных модулей.

Если напряжение выставится по планке с более низким вольтажом, то другим может не хватить питания и система будет работать не стабильно. Если напряжение выставится по планке с более высоким вольтажом, то память рассчитанная на меньшее напряжение может выйти из строя.

Если вы собираете новый компьютер, то это не так важно, но чтобы избежать возможных проблем совместимости с материнской платой и заменой или расширением памяти в будущем, лучше выбирать планки со стандартным напряжением питания.

Память, в зависимости от типа, имеет следующие стандартные напряжения питания:

  • DDR — 2.5 В
  • DDR2 — 1.8 В
  • DDR3 — 1.5 В
  • DDR3L — 1.35 В
  • DDR4 — 1.2 В

Я думаю, вы обратили внимание на то, что в списке есть память DDR3L. Это не новый тип памяти, а обычная DDR3, но с пониженным напряжением питания (Low). Именно такая память нужна для процессоров Intel 6-го поколения и выше, которые поддерживают как память DDR4, так и DDR3. Но лучше в таком случае все же собирать систему на новой памяти DDR4.

6. Маркировка модулей памяти

Модули памяти маркируются в зависимости от типа памяти и ее частоты. Маркировка модулей памяти типа DDR начинается с PC, затем идет цифра, обозначающая поколение и скорость в мегабайтах в секунду (Мб/с).

По такой маркировке неудобно ориентироваться, достаточно знать тип памяти (DDR, DDR2, DDR3, DDR4), ее частоту и латентность. Но иногда, например на сайтах объявлений, можно увидеть маркировку, переписанную с планки. Поэтому, чтобы вы могли сориентироваться в таком случае, я приведу маркировку в классическом виде, с указанием типа памяти, ее частоты и типичной латентности.

DDR – устаревшая

  • PC-2100 (DDR 266 МГц) — CL 2.5
  • PC-2700 (DDR 333 МГц) — CL 2.5
  • PC-3200 (DDR 400 МГц) — CL 2.5

DDR2 – устаревшая

  • PC2-4200 (DDR2 533 МГц) — CL 5
  • PC2-5300 (DDR2 667 МГц) — CL 5
  • PC2-6400 (DDR2 800 МГц) — CL 5
  • PC2-8500 (DDR2 1066 МГц) — CL 5

DDR3 – устаревающая

  • PC3-10600 (DDR3 1333 МГц) — CL 9
  • PC3-12800 (DDR3 1600 МГц) — CL 11
  • PC3-14400 (DDR3 1866 МГц) — CL 11
  • PC3-16000 (DDR3 2000 МГц) — CL 11
  • PC4-17000 (DDR4 2133 МГц) — CL 15
  • PC4-19200 (DDR4 2400 МГц) — CL 16
  • PC4-21300 (DDR4 2666 МГц) — CL 16
  • PC4-24000 (DDR4 3000 МГц) — CL 16
  • PC4-25600 (DDR4 3200 МГц) — CL 16

Память DDR3 и DDR4 может иметь и более высокую частоту, но работать с ней могут только топовые процессоры и более дорогие материнские платы.

7. Конструкция модулей памяти

Планки памяти могут быть односторонние, двухсторонние, с радиаторами или без.

7.1. Размещение чипов

Чипы на модулях памяти могут размещаться с одной стороны платы (односторонние) и с двух сторон (двухсторонние).

Это не имеет значения если вы приобретаете память для нового компьютера. Если же вы хотите добавить память на старый ПК, то желательно, чтобы расположение чипов на новой планке было такое же как и на старой. Это поможет избежать проблем совместимости и повысит вероятность работы памяти в двухканальном режиме, о чем мы еще поговорим в этой статье.

Сейчас в продаже можно встретить множество модулей памяти с алюминиевыми радиаторами различного цвета и формы.

Наличие радиаторов может быть оправдано на памяти DDR3 с высокой частотой (1866 МГц и более), так как она сильнее греется. При этом в корпусе должна быть хорошо организована вентиляция.

Современная оперативка DDR4 с частотой 2400, 2666 МГц практически не греется и радиаторы на ней будут носить чисто декоративный характер. Они могут даже мешать, так как через некоторое время забьются пылью, которую из них трудно вычистить. Кроме того, стоить такая память будет несколько дороже. Так что, если хотите, на этом можно сэкономить, например, взяв отличную память Crucial на 2400 МГц без радиаторов.

Память с частотой от 3000 МГц имеет еще и повышенное напряжение питания, но тоже греется не сильно и в любом случае на ней будут радиаторы.

8. Память для ноутбуков

Память для ноутбуков отличается от памяти для стационарных компьютеров только размером модуля памяти и маркируется SO-DIMM DDR. Так же как и для стационарных компьютеров память для ноутбуков имеет типы DDR, DDR2, DDR3, DDR3L, DDR4.

По частоте, таймингам и напряжению питания память для ноутбуков не отличается от памяти для компьютеров. Но ноутбуки оснащаются только 1 или 2 слотами для памяти и имеют более жесткие ограничения максимального объема. Обязательно уточняйте эти параметры перед выбором памяти для конкретной модели ноутбука.

9. Режимы работы памяти

Память может работать в одноканальном (Single Channel), двухканальном (Dual Channel), трехканальном (Triple Channel) или четырехканальном режиме (Quad Channel).

В одноканальном режиме запись данных происходит последовательно в каждый модуль. В многоканальных режимах запись данных происходит параллельно во все модули, что приводит к значительному увеличению быстродействия подсистемы памяти.

Одноканальным режимом работы памяти ограничены только безнадежно устаревшие материнские платы с памятью DDR и первые модели с DDR2.

Все современные материнские платы поддерживают двухканальный режим работы памяти, а трехканальный и четырехканальный режим поддерживают только некоторые единичные модели очень дорогих материнских плат.

Главным условием работы двухканального режима является наличие 2 или 4 планок памяти. Для трехканального режима необходимо 3 или 6 планок памяти, а для четырехканального 4 или 8 планок.

Желательно, чтобы все модули памяти были одинаковыми. В противном случае работа в двухканальном режиме не гарантируется.

Если вы хотите добавить память на старый компьютер и ваша материнская плата поддерживает двухканальный режим, постарайтесь подобрать максимально идентичную по всем параметрам планку. Лучше всего продать старую и купить 2 новых одинаковых планки.

В современных компьютерах контроллеры памяти были перенесены с материнской платы в процессор. Теперь не так важно, чтобы модули памяти были одинаковыми, так как процессор в большинстве случаев все равно сможет активировать двухканальный режим. Это значит, что если вы в будущем захотите добавить память на современный компьютер, то не обязательно будет искать точь в точь такой же модуль, достаточно выбрать наиболее похожий по характеристикам. Но все же я рекомендую, что бы модули памяти были одинаковыми. Это даст вам гарантию ее быстрой и стабильной работы.

С переносом контроллеров памяти в процессор появились еще 2 режима двухканальной работы памяти – Ganged (спаренный) и Unganged (неспаренный). В случае если модули памяти одинаковые, то процессор может работать с ними в режиме Ganged, как и раньше. В случае, если модули отличаются по характеристикам, то для устранения перекосов в работе с памятью процессор может активировать режим Unganged. В целом скорость работы памяти в этих режимах практически одинаковая и не имеет никакой разницы.

Единственным недостатком двухканального режима является то, что несколько модулей памяти стоят дороже, чем один такого же объема. Но если вы не очень сильно стеснены в средствах, то покупайте 2 планки, скорость работы памяти будет значительно выше.

Если вам нужно, скажем 16 Гб оперативки, но вы пока не можете себе этого позволить, то можно приобрести одну планку на 8 Гб, чтобы в будущем добавить еще одну такую же. Но все же лучше приобретать две одинаковых планки сразу, так как потом может не получиться найти такую же и вы столкнетесь с проблемой совместимости.

10. Производители модулей памяти

Одним из лучших соотношений цена/качество на сегодня обладает память безукоризненно зарекомендовавшего себя бренда Crucial, у которого есть модули от бюджетных до геймерских (Ballistix).

Наравне с ним соперничает пользующийся заслуженной популярностью бренд Corsair, память которого стоит несколько дороже.

Как недорогую, но качественную альтернативу, особенно рекомендую польский бренд Goodram, у которого есть планки с низкими таймингами за невысокую цену (линейка Play).

Для недорогого офисного компьютера достаточно будет простой и надежной памяти производства AMD или Transcend. Они прекрасно себя зарекомендовали и с ними практически не бывает проблем.

Вообще, лидерами в производстве памяти считаются корейские компании Hynix и Samsung. Но сейчас модули этих брендов массово производятся на дешевых китайских фабриках и среди них очень много подделок. Поэтому я не рекомендую приобретать память этих брендов.

Исключением могут быть модули памяти Hynix Original и Samsung Original, которые производятся в Корее. Эти планки обычно синего цвета, их качество считается лучше чем в сделанных в Китае и гарантия на них бывает несколько выше. Но по скоростным характеристикам они уступают памяти с более низкими таймингами других качественных брендов.

Ну а для энтузиастов и любителей модинга есть доступные оверклокерские бренды GeIL, G.Skill, Team. Их память отличается низкими таймингами, высоким разгонным потенциалом, необычным внешним видом и стоит немного дешевле раскрученного бренда Corsair.

В продаже также есть большой ассортимент модулей памяти от очень популярного производителя Kingston. Память, продающаяся под бюджетным брендом Kingston, никогда не отличалась высоким качеством. Но у них есть топовая серия HyperX, пользующаяся заслуженной популярностью, которую можно рекомендовать к приобретению, однако цена на нее часто завышена.

11. Упаковка памяти

Лучше приобретать память в индивидуальной упаковке.

Обычно она более высокого качества и вероятность повреждения при транспортировке значительно ниже, чем у памяти, которая поставляется без упаковки.

12. Увеличение памяти

Если вы планируете добавить память на имеющийся компьютер или ноутбук, то сначала узнайте какой максимальный объем планок и общий объем памяти поддерживает ваша материнская плата или ноутбук.

Также уточните сколько слотов для памяти на материнской плате или в ноутбуке, сколько из них занято и какие планки в них установлены. Лучше сделать это визуально. Откройте корпус, выньте планки памяти, рассмотрите их и перепишите все характеристики (или сделайте фото).

Если по какой-то причине вы не хотите лезть в корпус, то посмотреть параметры памяти можно в программе на вкладке SPD. Таким образом вы не узнаете односторонняя планка или двухсторонняя, но можете узнать характеристики памяти, если на планке нет наклейки.

Есть базовая и эффективная частота памяти. Программа CPU-Z и многие подобные показывают базовую частоту, ее нужно умножать на 2.

После того, как вы узнаете до какого объема можете увеличить память, сколько свободных слотов и какая память у вас установлена, можно будет приступать к изучению возможностей по увеличению памяти.

Если все слоты для памяти заняты, то единственной возможностью увеличения памяти остается замена существующих планок на новые большего объема. А старые планки можно будет продать на сайте объявлений или сдать на обмен в компьютерный магазин при покупке новых.

Если свободные слоты есть, то можно добавить к уже существующим планкам памяти новые. При этом желательно, чтобы новые планки были максимально близки по характеристикам уже установленным. В этом случае можно избежать различных проблем совместимости и повысить шансы того, что память будет работать в двухканальном режиме. Для этого должны быть соблюдены следующие условия, в порядке важности.

  1. Тип памяти должен совпадать (DDR, DDR2, DDR3, DDR3L, DDR4).
  2. Напряжение питания всех планок должно быть одинаковым.
  3. Все планки должны быть односторонние или двухсторонние.
  4. Частота всех планок должна совпадать.
  5. Все планки должны быть одинакового объема (для двухканального режима).
  6. Количество планок должно быть четным: 2, 4 (для двухканального режима).
  7. Желательно, чтобы совпадала латентность (CL).
  8. Желательно, чтобы планки были того же производителя.

Проще всего начать выбор с производителя. Выбирайте в каталоге интернет-магазина планки того же производителя, объема и частоты, как установлены у вас. Убедитесь, что совпадает напряжение питания и уточните у консультанта односторонние они или двухсторонние. Если будет еще совпадать и латентность, то вообще хорошо.

Если вам не удалось найти похожие по характеристикам планки того же производителя, то выбирайте всех остальных из перечня рекомендуемых. Затем опять ищите планки нужного объема и частоты, сверяете напряжение питания и уточняете односторонние они или двухсторонние. Если вам не удалось найти похожие планки, то поищите в другом магазине, каталоге или на сайте объявлений.

Всегда лучший вариант это продать всю старую память и купить 2 новых одинаковых планки. Если материнская плата не поддерживает планки нужного объема, возможно придется купить 4 одинаковых планки.

13. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Оперативная память» на сайте продавца.
  2. Выберите рекомендуемых производителей.
  3. Выберите формфактор (DIMM — ПК, SO-DIMM — ноутбук).
  4. Выберете тип памяти (DDR3, DDR3L, DDR4).
  5. Выберите необходимый объем планок (2, 4, 8 Гб).
  6. Выберите максимально поддерживаемую процессором частоту (1600, 1866, 2133, 2400 МГц).
  7. Если ваша материнская плата поддерживает XMP, добавьте к выборке память с более высокой частотой (2666, 3000 МГц).
  8. Отсортируйте выборку по цене.
  9. Последовательно просматривайте все позиции, начиная с более дешевых.
  10. Выберите несколько планок подходящих по частоте.
  11. Если разница в цене для вас приемлема, берите планки с большей частотой и меньшей латентностью (CL).

Таким образом, вы получите оптимальную по соотношению цена/качество/скорость память за минимально возможную стоимость.

14. Ссылки

Оперативная память Corsair CMK16GX4M2A2400C16
Оперативная память Corsair CMK8GX4M2A2400C16
Оперативная память Crucial CT2K4G4DFS824A



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
NexxDigital - компьютеры и операционные системы