NexxDigital - компьютеры и операционные системы

Объединение рассмотренных выше компонент в сеть может производится различными способами и средствами. По составу своих компонент, способам их соединения, сфере использования и другим признакам сети можно разбить на классы таким образом, чтобы принадлежность описываемой сети к тому или иному классу достаточно полно могла характеризовать свойства и качественные параметры сети.

Однако такого рода классификация сетей является довольно условной. Наибольшее распространение на сегодня получило, разделение компьютерных сетей по признаку территориального размещения.

По этому признаку сети делятся на три основных класса:

­ LAN – локальные сети (Local Area Networks);

­ MAN – городские сети (Metropolitan Area Networks).

­ WAN – глобальные сети (Wide Area Networks);

Локальная сеть (ЛС) – это коммуникационная система, поддерживающая в пределах здания или некоторой другой ограниченной территории один или несколько высокоскоростных каналов передачи цифровой информации, предоставляемых подключенным устройствам для кратковременного монопольного использования. Территории, охватываемые ЛС, могут существенно различаться.

Длина линий связи для некоторых сетей может быть не более 1000 м, другие же ЛС в состоянии обслужить целый город. Обслуживаемыми территориями могут быть как заводы, суда, самолеты, так и учреждения, университеты, колледжи. В качестве передающей среды, как правило, используются коаксиальные кабели, хотя все большее распространение получают сети на витой паре и оптоволокне, а в последнее время также стремительно развивается технология беспроводных локальных сетей, в которых используется один из трех видов излучений: широкополосные радиосигналы, маломощное излучение сверхвысоких частот (СВЧ излучение) и инфракрасные лучи.

Небольшие расстояния между узлами сети, используемая передающая среда и связанная с этим малая вероятность появления ошибок в передаваемых данных позволяют поддерживать высокие скорости обмена – от 1 Мбит/с до 100 Мбит/с (в настоящее время уже есть промышленные образцы ЛС со скоростями порядка 1 Гбит/с).

Городские сети , как правило, охватывают группу зданий и реализуются на оптоволоконных или широкополосных кабелях. По своим характеристикам они являются промежуточными между локальными и глобальными сетями. В последнее время в связи с прокладкой высокоскоростных и надежных оптоволоконных кабелей на городских и междугородних участках, а новые перспективные сетевые протоколы, например, ATM (Asynchronous Transfer Mode – режим асинхронной передачи), которые в перспективе могут использоваться как в локальных, так и в глобальных сетях.



Глобальные сети , в отличие от локальных, как правило, охватывают значительно большие территории и даже большинство регионов земного шара (примером может служить сеть Internet). В настоящее время в качестве передающей среды в глобальных сетях используются аналоговые или цифровые проводные каналы, а также спутниковые каналы связи (обычно для связи между континентами). Ограничения по скорости передачи (до 28,8 Кбит/с на аналоговых каналах и до 64 Кбит/с – на пользовательских участках цифровых каналов) и относительно низкая надежность аналоговых каналов, требующая использования на нижних уровнях протоколов средств обнаружения и исправления ошибок существенно снижают скорость обмена данными в глобальных сетях по сравнению с локальными.

Существуют и другие классификационные признаки компьютерных сетей.

По сфере функционирования сети делятся на:

Банковские сети,

Сети научных учреждений,

Университетские сети;

По форме функционирования можно выделить:

Коммерческие сети;

Бесплатные сети,

Корпоративные сети

Сети общего пользования;

По характеру реализуемых функций сети разделяются на:

Вычислительные, предназначенные для решения задач управления на основе вычислительной обработки исходной информации;

Информационные, предназначенные для получения справочных данных по запросу пользователей; смешанные, в которых реализуются вычислительные и информационные функции.

По способу управления вычислительные сети делятся на:

Сети с децентрализованным управлением;

Централизованным управлением;

Смешанным управлением.

В первом случае каждая ЭВМ, входящая в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных ЭВМ разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети.

В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации.

По совместимости программного обеспечения бывают сети:

Однородные;

Гомогенные (состоящие из программно-совместимых компьютеров)

Неоднородные или гетерогенные (если компьютеры, входящие в сеть, программно несовместимы).

Локальные сети

Существуют два подхода к построению локальных сетей и, соответственно два типа: сети типа клиент/сервер и одноранговые сети.

Сети типа клиент/сервер

В сетях типа клиент/сервер используется выделенный компьютер (сервер), на котором сосредоточены файлы общего пользования и который предоставляет сервис печати для многих пользователей (рис. 1).


Рис. 1. Сети типа клиент/сервер

Сервер – компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами.

Серверы могут осуществлять хранение данных, управление базами данных, удаленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер – источник ресурсов сети. Серверов может быть довольно много в сети, и каждый из них может обслуживать свою группу пользователей или управлять определенными базами данных.

Рабочая станция персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам. Рабочая станция сети функционирует как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой (MSDOS, Windows и т. д.), обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач. Рабочие станции, подключаемые к серверу, называются клиентами. В качестве клиентов могут использоваться как мощные компьютеры для ресурсоемкой обработки электронных таблиц, так и маломощные PC для простой обработки текстов. В противоположность этому в качестве серверов обычно устанавливают мощные компьютеры. В связи с необходимостью обеспечивать одновременную обработку запросов большого количества клиентов и хорошую защиту данных сети от несанкционированного доступа, сервер должен работать под управлением специализированной операционной системы.

Примеры: Novell Net Ware, Windows NT Server, IBM OS/2 Lan Server, Banyan Vines.

Одноранговые сети

В одноранговых сетях выделенные серверы не используются (рис. 2). Одновременно с обслуживанием пользователя компьютер в одноранговой сети может брать на себя функции сервера, выполняя задания на печать и отвечая на файловые запросы с других рабочих станций сети. Конечно, если компьютер не предоставляет в общее пользование свое дисковое пространство или свой принтер, то он является только клиентом по отношению к другим рабочим станциям, выполняющим функции сервера. Windows 95 имеет встроенные возможности для построения одноранговой сети. Если возникнет необходимость подключения к другим одноранговым сетям, то Windows 95 поддерживает следующие сети:

­ Net Ware Lite

­ Artisoft LANtastic.


Рис. 2. Расположение компьютеров в одноранговых сетях.

Топология сети

Под топологией понимается описание свойств сети, присущих всем ее гомоморфным преобразованиям, т.е. таким изменениям внешнего вида сети, расстояний между ее элементами, их взаимного расположения, при которых не изменяется соотношение этих элементов между собой.

Топология компьютерной сети во многом определяется способом соединения компьютеров друг с другом. Топология во многом определяет многие важные свойства сети, например такие, как надежность (живучесть), производительность и др. Существуют разные подходы к классификации топологий сетей. Согласно одному из них конфигурации локальных сетей делятся на два основных класса: широковещательные и последовательные .

В широковещательных конфигурациях каждый ПК (приемо-передатчик физических сигналов) передает сигналы, которые могут быть восприняты остальными ПК. К таким конфигурациям относятся топологии «общая шина», «дерево», «звезда с пассивным центром». Сеть типа «звезда с пассивным центром» можно рассматривать как разновидность «дерева», имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию только одному ПК. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, «кольцо», «цепочка», «звезда с интеллектуальным центром», «снежинка» и
другие.

Наиболее оптимальной с точки зрения надежности (возможности функционирования сети при выходе строя отдельных узлов или каналов связи) является полносвязная сеть , т.е. сеть, в который каждый узел сети связан со всеми другими узлами, однако при большом числе узлов такая сеть требует большого количества каналов связи и труднореализуема из-за технических сложностей и высокой стоимости. Поэтому практически все сети являются неполносвязными .

Хотя при заданном числе узлов в неполносвязной сети может существовать большое количество вариантов соединения узлов сети, на практике обычно используется три наиболее широко распространенные (базовые) топологии ЛВС:

1. общая шина;

2. кольцо;

3. звезда.

Шинная топология (рис. 3) , когда все узлы сети подключаются к одному незамкнутому каналу, обычно называемому шиной.

Рис 3. Топология «Шина».

В данном случае, одна из машин служит в качестве системного обслуживающего устройства, обеспечивающего централизованный доступ к общим файлам и базам данных, печатающим устройствам и другим вычислительным ресурсам.

Сети данного типа приобрели большую популярность благодаря низкой стоимости, высокой гибкости и скорости передачи данных, легкости расширения сети (подключение новых абонентов к сети не сказывается на ее основных характеристиках). К недостаткам шинной топологии следует отнести необходимость использования довольно сложных протоколов и уязвимость в отношении физических повреждений кабеля.

Кольцевая топология (рис. 4), когда все узлы сети подключаются к одному замкнутому кольцевому каналу.

Рис 4. Топология «Кольцо».

Эта структура сети характеризуется тем, что информация по кольцу может передаваться только в одном направлении и все подключенные ПЭВМ могут участвовать в ее приеме и передаче. При этом абонент-получатель должен пометить полученную информацию специальным маркером, иначе могут появиться «заблудившиеся» данные, мешающие нормальной работе сети.

Как последовательная конфигурация кольцо особенно уязвимо в отношении отказов: выход из строя какого-либо сегмента кабеля приводит к прекращению обслуживания всех пользователей. Разработчики ЛВС приложили немало усилий, чтобы справиться с этой проблемой. Защита от повреждений или отказов обеспечивается либо замыканием кольца на обратный (дублирующий) путь, либо переключением на запасное кольцо. И в том, и в другом случае сохраняется общая кольцевая топология.

Звездообразная топология (рис. 5) , когда все узлы сети подключаются к одному центральному узлу, называемому хостом (host ) или хабом (hub ).

Рис 5. Топология «Звезда».

Конфигурациюможно рассматривать как дальнейшее развитие структуры «дерево с корнем» с ответвлением к каждому подключенному устройству. В центре сети обычно размещается коммутирующее устройство, обеспечивающее жизнеспособность системы. ЛВС подобной конфигурации находят наиболее частое применение в автоматизированных учрежденческих системах управления, использующих центральную базу данных. Звездообразные ЛВС, как правило, менее надежны, чем сети с общей шиной или иерархические, но эта проблема решается дублированием аппаратуры центрального узла. К недостаткам можно также отнести значительное потребление кабеля (иногда в несколько раз превышающее расход в аналогичных по возможностям ЛВС с общей шиной или иерархических).

Сети могут быть также смешанной топологии (гибридные ), когда отдельные части сети имеют разную топологию. Примером может служить локальная сеть FDDI, в которой основные (магистральные) узлы подключаются к кольцевому каналу, а к ним по иерархической топологии подключаются остальные узлы.

Объединение компьютеров и устройств в сеть может производиться различными способами и средствами. По составу своих компоненов, способам их соединения, сфере использования и другим признакам сети можно разбить на классы таким образом, чтобы принадлежность описываемой сети к тому или иному классу достаточно полно могла характеризовать свойства и качественные параметры сети.

Однако такого рода классификация сетей является довольно условной. Наибольшее распространение на сегодня получило разделение компьютерных сетей по признаку территориального размещения. По этому признаку сети делятся на три основных класса:

LAN (Local Area Networks) – локальные сети;

MAN (Metropolitan Area Networks) – региональные (городские или корпоративные) сети;

WAN (Wide Area Networks) – глобальные сети.

Локальная сеть (ЛС) – это коммуникационная система, поддерживающая в пределах здания или некоторой другой ограниченной территории один или несколько высокоскоростных каналов передачи цифровой информации, предоставляемых подключенным устройствам для кратковременного монопольного использования. Территории, охватываемые ЛС, могут существенно различаться.

Длина линий связи для некоторых сетей может быть не более 1000 м, другие же ЛС в состоянии обслужить целый город. Обслуживаемыми территориями могут быть как заводы, суда, самолеты, так и учреждения, университеты, колледжи. В качестве передающей среды, как правило, используются коаксиальные кабели, хотя все большее распространение получают сети на витой паре и оптоволокне, а в последнее время также стремительно развивается технология беспроводных локальных сетей, в которых используется один из трех видов излучений: широкополосные радиосигналы, маломощное излучение сверхвысоких частот (СВЧ излучение) и инфракрасные лучи.

Небольшие расстояния между узлами сети, используемая передающая среда и связанная с этим малая вероятность появления ошибок в передаваемых данных позволяют поддерживать высокие скорости обмена – от 1 Мбит/с до 100 Мбит/с (в настоящее время уже есть промышленные образцы ЛС со скоростями порядка 1 Гбит/с).

Региональные сети, как правило, охватывают группу зданий и реализуются на оптоволоконных или широкополосных кабелях. По своим характеристикам они являются промежуточными между локальными и глобальными сетями.

Глобальные сети, в отличие от локальных, как правило, охватывают значительно большие территории и даже большинство регионов земного шара (примером может служить сеть Internet). В настоящее время в качестве передающей среды в глобальных сетях используются аналоговые или цифровые проводные каналы, а также спутниковые каналы связи (обычно для связи между континентами). Ограничения по скорости передачи и относительно низкая надежность аналоговых каналов, требующая использования на нижних уровнях протоколов средств обнаружения и исправления ошибок, существенно снижают скорость обмена данными в глобальных сетях по сравнению с локальными.

Существуют и другие классификационные признаки компьютерных сетей. Так, например:

– по сфере функционирования сети могут быть разделены на банковские научных учреждений, университетские;

– по форме функционирования можно выделить коммерческие и бесплатные сети, корпоративные и общего пользования;

– по характеру реализуемых функций сети подразделяются на вычислительные (предназначенные для решения задач управления на основе вычислительной обработки исходной информации); информационные (предназначенные для получения справочных данных по запросу пользователей); смешанные (в них реализуются вычислительные и информационные функции);

– по способу управления вычислительные сети делятся на сети с децентрализованным, централизованным и смешанным управлением. В первом случае каждая ЭВМ, входящая в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных ЭВМ разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети. В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации.

Локальные сети

Локальная сеть создается, как правило, для совместного использования ресурсов ЭВМ или данных (обычно в одной организации). С технической точки зрения локальная сеть – совокупность компьютеров и каналов связи, объединяющих компьютеры в структуру с определенной конфигурацией, а также сетевого программного обеспечения, управляющего работой сети. Способ соединения компьютеров в локальную сеть называется топологией.

Топология во многом определяет многие важные свойства сети, например такие, как надежность (живучесть), производительность и др. Существуют разные подходы к классификации топологий сетей. По производительности они делятся на два основных класса: широковещательные и последовательные.

В широковещательных конфигурациях каждый компьютер передает сигналы, которые могут быть восприняты остальными компьютерами. К таким конфигурациям относятся топологии «общая шина», «дерево», «звезда с пассивным центром». Сеть типа «звезда с пассивным центром» можно рассматривать как разновидность «дерева», имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию только одному ПК. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, «кольцо», «цепочка», «звезда с интеллектуальным центром», «снежинка» и другие.

Топология «Шина»

Рисунок 10.2. Шинная топология локальной сети

При таком соединении обмен может производиться между любыми компьютерами сети, независимо от остальных. При повреждении связи одного компьютера с общей шиной, этот компьютер отключается от сети, но вся сеть работает. В этом смысле сеть достаточно устойчива, но если повреждается шина, то вся сеть выходит из строя.

Топология «Кольцо»


Рисунок 10.3. Кольцевая топология локальной сети

При этом соединении данные также передаются последовательно от компьютера к компьютеру, но по сравнению с простым последовательным соединением данные могут передаваться в двух направлениях, что повышает устойчивость к неполадкам сети. Один разрыв не выводит сеть из строя, но два разрыва делают сеть нерабочей. Кольцевая сеть достаточно широко применяется, в основном из-за высокой скорости передачи данных. Кольцевые сети самые скоростные.

Топология «Звезда»


Рисунок 10.4. Звездообразная топология локальной сети

При соединении звездой сеть очень устойчива к повреждениям. При повреждении одного из соединений от сети отключается только один компьютер. Кроме того, эта схема соединения позволяет создавать сложные разветвленные сети. Устройства, которые позволяют организовывать сложные структуры сетей, называются концентраторами и коммутаторами.

Данные модели определяют взаимодействие компьютеров в локальной вычислительной сети. В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к данным, которые хранятся на его компьютере.

Рабочая группа (Workgroup) - это самостоятельное решение организации компьютерной сети для небольшого количества компьютеров, которая имеет одноранговую архитектуру и процесс аутентификации в которой происходит на основе локальной базы, хранящиеся на каждом из компьютеров рабочей группы

В одноранговой сети пользователю, работающему за любым компьютером доступны ресурсы всех других компьютеров сети. Например, сидя за одним компьютером, можно редактировать файлы, расположенные на другом компьютере, печатать их на принтере, подключенном к третьему, запускать программы на четвертом.

К достоинствам такой модели организации ЛВС относится простота реализации и экономия материальных средств, так как нет необходимости приобретать дорогой сервер.

Несмотря на простоту реализации, данная модель имеет ряд недостатков:

  • 1. Низкое быстродействие при большом числе подключенных компьютеров;
  • 2. Отсутствие единой информационной базы;
  • 3. Отсутствие единой системы безопасности информации;
  • 4. Зависимость наличия в системе информации от состояния компьютера, т.е. Если компьютер выключен, то вся информация, хранящиеся на нем, будет недоступна.

Active Directory

Active Directory позволяет управлять администраторам с одного рабочего места всеми заявленными ресурсами: файлами, периферийными устройствами, базами данных, подключениями к серверам, доступом к Web, пользователями, сервисами.

В сетях с развертыванием DNS для поддержки службы каталогов Active Directory настоятельно рекомендуется использовать основные зоны, интегрированные в службу каталогов, которые предоставляют следующие преимущества:

  • 1. Обновление главным сервером и расширенные средства безопасности, базирующиеся на возможностях Active Directory.
  • 2. Репликация и синхронизация зон с новыми контроллерами домена выполняется автоматически при каждом добавлении нового контроллера в домен Active Directory.
  • 3. За счет сохранения баз данных зон DNS в Active Directory имеется возможность рационализировать репликацию баз данных в сети.
  • 4. Репликация каталогов выполняется быстрее и эффективнее, чем стандартная репликация DNS.

Поскольку репликация Active Directory выполняется на уровне отдельных свойств, распространяются только необходимые изменения. При этом для зон, интегрированных в службу каталогов, используется и отправляется меньший объем данных.

В качестве достоинств такой модели следует выделить:

  • 1. Высокое быстродействие сети;
  • 2. Наличие единой информационной базы;
  • 3. Наличие единой системы безопасности.

Однако у данной модели есть и недостатки. Главный недостаток заключается в том, что стоимость создания сети типа клиент-сервер значительной выше, за счет необходимости приобретать специальный сервер. Также к недостаткам можно отнести и наличие дополнительной потребности в обслуживающем персонале - администраторе сети.

Для данной организации была выбрана локально-вычислительная сеть на основе клиент-серверной модели. Сервер в данной организации будет представлен в виде компьютера из класса №2, к которому иметь доступ будет только управляющий персонал интернет-кафе. Сервер будет размещен в специальном компьютерном шкафу для защиты.

Коммуникационная сеть – система узлов и соединений между ними. В узлах осуществляются функции создания, преобразования, хранения и потребления продукта коммуникаций. Соединения (каналы передачи, линии связи) служат для передачи продукта между узлами. В зависимости от вида продукта различают вещественные, энергетические, информационные сети. Примеры вещественных сетей: автотранспортное и железнодорожное сообщения; водо- и газоснабжение.

Информационная сеть – коммуникационная сеть, в которой продуктом коммуникаций является информация. Примеры: телефонные сети, телевидение, радиовещание.

Вычислительная , или компьютерная сеть – информационная сеть, узлами которой являются компьютеры и другое вычислительное оборудование. Помимо специального сетевого оборудования, необходимо также сетевое программное обеспечение. Благодаря взаимодействию компьютеров в сети, становится доступным ряд новых возможностей.

Первое – совместное использование аппаратных и программных ресурсов. Так, при общем доступе к дорогостоящему периферийному устройству (принтеру, плоттеру, сканеру, факсу и др.) снижаются затраты на каждого отдельного пользователя. Аналогично используются сетевые версии прикладного программного обеспечения.

Второе – совместный доступ к ресурсам данных. При централизованном хранении информации значительно упрощаются процессы обеспечения ее целостности, а также резервного копирования, что обеспечивает высокую надёжность. Наличие альтернативных копий на двух машинах одновременно позволяет продолжать работу при недоступности одной из них.

Третье – ускорение передачи данных и обеспечение новых форм взаимодействия пользователей в одном коллективе при работе над общим проектом.

Четвертое – использование общих средств связи между различными прикладными системами (коммуникационные услуги, передача данных, видео, речи и т.д.).

Одним из важных классификационных признаков сетей является их размер. Размеры сети влияют на выбор используемого оборудования и применяемых технологий передачи.

Локальная вычислительная сеть (ЛВС, или LAN – Local Area Network) объединяет близкорасположенные компьютеры в пределах ограниченной территории, помещения, здания. Отличительные особенности ЛВС – минимальное время задержки и низкий уровень ошибок. ЛВС могут являться элементами более крупномасштабных образований: кампусная, или корпоративная сеть (CAN – Campus Area Network), объединяющая локальные сети близко расположенных зданий; муниципальная сеть, или сеть городского масштаба (MAN – Metropolitan Area Network); региональная, или широкомасштабная сеть (WAN – Wide Area Network), охватывающая значительную территорию; глобальная вычислительная сеть (ГВС, или GAN – Global Area Network), имеющая размеры страны и континента.

По способу управления сети делятся на одноранговые и с выделенным сервером (централизованным управлением). В одноранговых сетях все узлы равноправны – каждый узел может выступать в роли и клиента, и сервера. Под клиентом понимается программно-аппаратный объект, запрашивающий некоторые услуги. А под сервером – комбинация аппаратных и программных средств, которая эти услуги предоставляет. Компьютер, подключенный к локальной сети, в зависимости от задач, решаемых на нем, называют рабочей станцией (workstation) или сервером (server).

Одноранговые ЛВС достаточно просты в обслуживании, однако не могут обеспечить должной защиты информации при большом размере сети. Затраты на организацию одноранговых вычислительных сетей относительно небольшие. Однако при увеличении числа рабочих станций эффективность использования сети резко уменьшается. Поэтому одноранговые ЛВС используются только для небольших рабочих групп – не более 20 компьютеров.

Выделенный сервер реализует функции управления сетью (администрирования) в соответствии с заданными политиками – совокупностями правил разделения и ограничения прав участников сети. ЛВС с выделенным сервером имеют хорошие средства обеспечения безопасности данных, способны поддерживать тысячи пользователей, однако требуют постоянного квалифицированного обслуживания системным администратором.

В зависимости от используемой технологии передачи данных различают широковещательные сети и сети с передачей от узла к узлу . Широковещательная передача применяется в основном в небольших сетях, а в крупных – передача от узла к узлу.

В широковещательных сетях всеми узлами сети совместно используется единый канал связи. Посылаемые одним компьютером сообщения, называемые пакетами, принимаются всеми остальными машинами. В каждом пакете имеется адрес получателя сообщения. Если пакет адресован другому компьютеру, то он игнорируется. Таким образом, после проверки адреса получатель обрабатывает только те пакеты, которые ему предназначены.

Сети с передачей от узла к узлу состоят из попарно соединённых машин. В такой сети, чтобы попасть в пункт назначения, пакет проходит через ряд промежуточных машин. При этом часто существуют альтернативные пути от источника к получателю.

Способ объединения компьютеров между собой в сети называют топологией . Различают три наиболее распространенные топологии, которые используют в ЛВС. Это так называемые шинная , кольцевая и звездообразная структуры.

В случае реализации шинной (линейной) структуры все компьютеры связываются в цепочку с помощью одного общего коаксиального кабеля. Если же хотя бы один из участков сети с шинной структурой оказывается нарушенным, вся сеть в целом становится неработоспособной. Дело в том, что тогда происходит разрыв единственного физического канала, необходимого для движения сигнала.

Кольцевая структура используется в основном в сетях Token Ring и отличается от шинной тем, что все компьютеры попарно соединяются друг с другом, образуя замкнутый контур. Также в случае неисправности одного из сегментов сети вся сеть выходит из строя.

В сети с звездообразной структурой центральным узлом, к которому подключаются все остальные, является концентратор (Hub – «хаб»). Его основная функция – обеспечение связи между компьютерами, входящими в сеть. Данная структура предпочтительнее, поскольку в случае выхода из строя одной из рабочих станций или кабеля, связывающего её с концентратором, все остальные сохраняют работоспособность.

При построении сетей находит применение ячеистая (полносвязная ) топология, при которой каждый узел соединяется со всеми другими отдельными каналами. Затраты на создание избыточных каналов компенсируются высокой надёжностью – практически всегда существует несколько путей для прохождения сигналов от отправителя к получателю, поэтому при отключении одних каналов сигналы могут передаваться по другим.

Различают следующие способы коммутации данных в информационных сетях: коммутацию каналов , коммутацию пакетов и коммутацию сообщений .

При коммутации каналов сначала устанавливается весь путь соединения – от отправителя до получателя. Этот путь состоит из нескольких участков, соединённых коммутаторами и(или) мультиплексорами. Все данные передаются по установленному маршруту. По завершении передачи соединение разрывается. Пример – телефонный разговор: канал занят всё время разговора, даже если абоненты молчат. Скорость передачи по такому каналу ограничена участком с наименьшей пропускной способностью.

При втором методе сообщения разбиваются на пакеты фиксированной длины, которые могут доставляться по сети независимыми маршрутами, обеспечивая равномерную загрузку сети. При этом по одному каналу могут передаваться пакеты разных сообщений. В качестве примера приведём аналогию: в час «пик» группа студентов добирается из общежития в университет на разном транспорте, каждый по-своему.

Коммутация сообщений напоминает коммутацию пакетов, но на более высоком уровне (при этом узлы коммутации сообщений могут соединяться как сетью с коммутацией каналов, так и сетью с коммутацией пакетов). Основное отличие заключается в том, что размер блока данных определяется не технологическими ограничениями, а содержанием информации в сообщении. Это может быть текстовый документ, электронное письмо, файл. Пример – группа туристов следует по маршруту, в каждом пункте проверяется состав группы. По такой схеме передаются сообщения, не требующие немедленного ответа, например, сообщения электронной почты.

15.3Сетевая модель OSI/ISO

Функционирование сетевого оборудования невозможно без взаимоувязанных стандартов. Согласование стандартов достигается как за счет непротиворечивых технических решений, так и за счет группирования стандартов. Каждой конкретной сети присуща своя базовая совокупность протоколов – «языка» передачи данных. Протокол – формализованные правила взаимодействия нескольких компьютеров, которые могут быть описаны в виде набора процедур, определяющих последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах.

Международной организацией по стандартизации ISO (International Standards Organization) была предложена модель архитектуры вычислительной сети OSI (Open System Interconnection – связь открытых сетей). Эта модель, которой стараются придерживаться большинство пользователей, разделяет коммуникационные функции в сети на семь уровней . Обмен данными происходит путём их перемещения на компьютере отправителя с верхнего уровня на нижний, затем транспортировки по каналу связи и обратным преобразованием на компьютере получателя с нижнего уровня на верхний.

Самый высокий уровеньуровень приложений (Application Layer – прикладной) является интерфейсом между прикладными программами и процессами модели OSI.

Уровень представления (Presentation Layer) определяет формат для обмена данными, служит для шифрования, сжатия и кодового преобразования данных.

Сеансовый уровень (Session Layer) выполняет функции координации связи между рабочими станциями. Уровень обеспечивает создание сеанса связи, управление передачей и приемом пакетов сообщений и завершение сеанса.

Транспортный уровень (Transport Layer) осуществляет разделение или сборку сообщений на пакеты в том случае, когда в процессе передачи или приема находится более одного пакета, а также контроль очередности прохождения компонент сообщения. Кроме того, на этом уровне через шлюзы выполняется согласование сетевых уровней различных несовместимых сетей. Гарантирует доставку пакетов без ошибок, в той же последовательности, без потерь и дублирования с подтверждением приема.

Сетевой уровень (Network Layer) обеспечивает перевод логических имен адресов в физические. На основании конкретных сетевых условий, приоритета услуги осуществляется маршрутизация, то есть выбор маршрута передачи пакета данных в сети, и управление потоком данных в сети (буферизация данных, контроль ошибок при установлении соединения).

Канальный уровень (Data Link) определяет правила использования физического уровня узлами сети. Этот уровень подразделяется на два подуровня: Контроль доступа к среде (Media Access Control), связанный с доступом к сети и ее управлением, и Логический контроль связи (Logical Link Control), связанный с передачей и приемом пользовательских сообщений. Именно на уровне Data Link обеспечивается передача данных кадрами, которые представляют собой блоки данных, содержащие дополнительную управляющую информацию. Исправление ошибок осуществляется автоматически путем повторной посылки кадра. Кроме того, на этом уровне обеспечивается и правильная последовательность передаваемых и принимаемых кадров.

Самый низкий – физический уровень (Physical Layer) определяет физические, механические и электрические характеристики линий связи. На этом уровне выполняется преобразование данных, поступающих от канального уровня, в сигналы, которые затем передаются по линиям связи. В локальных сетях это преобразование осуществляется с помощью сетевых адаптеров, в глобальных сетях для этой цели используются модемы.

Каждый уровень реально взаимодействует только с соседними уровнями (верхним и нижним), виртуально – только с аналогичным уровнем на конце линии. Реальное взаимодействие – непосредственная передача информации, при которой данные остаются неизменными. Виртуальное взаимодействие – опосредованное взаимодействие и передача данных, причем данные в процессе передачи могут видоизменяться.

Физическая связь реально имеет место только на самом нижнем уровне. Горизонтальные связи между всеми остальными уровнями являются виртуальными, реально они осуществляются передачей и преобразованием информации сначала вниз, последовательно до самого нижнего уровня, где происходит реальная передача, а потом на другом конце – обратная передача вверх последовательно до соответствующего уровня.

Классификация ЛВС

Локальные сети можно классифицировать по :

  • уровню управления;
  • назначению;
  • однородности;
  • административным отношениям между компьютерами;
  • топологии;
  • архитектуре.

По уровню управления выделяют следующие ЛВС :

  • ЛВС рабочих групп, которые состоят из нескольких ПК, работающих под одной операционной системой. В такой ЛВС, как правило, имеется несколько выделенных серверов: файл-сервер, сервер печати;
  • ЛВС структурных подразделений (отделов). Данные ЛВС содержат несколько десятков ПК и серверы типа: файл-сервер, сервер печати, сервер баз данных;
  • ЛВС предприятий (фирм). Эти ЛВС могут содержать свыше 100 компьютеров и серверы типа: файл-сервер, сервер печати, сервер баз данных, почтовый сервер и другие серверы.

По назначению сети подразделяются на :

  • вычислительные сети , предназначенные для расчетных работ;
  • информационно-вычислительные сети , которые предназначены, как для ведения расчетных работ, так и для предоставления информационных ресурсов;
  • информационно-советующие , которые на основе обработки данных вырабатывают информацию для поддержки принятия решений;
  • информационно-управляющие сети , которые предназначены для управления объектов на основе обработки информации.

По типам используемых компьютеров можно выделить:

  • однородные сети, которые содержат однотипные компьютеры и системное программное обеспечение;
  • неоднородные сети, которые содержат разнотипные компьютеры и системное программное обеспечение.

По административным отношениям между компьютерами можно выделить:

  • ЛВС с централизованным управлением (с выделенными серверами);
  • ЛВС без централизованного управления (децентрализованные) или одноранговые (одноуровневые) сети.

В локальных сетях с централизованным управлением сервер обеспечивает взаимодействия между рабочими станциями, выполняет функции хранения данных общего пользования, организует доступ к этим данным и передает данные клиенту. Клиент обрабатывает полученные данные и предоставляет результаты обработки пользователю. Необходимо отметить, что обработка данных может осуществляться и на сервере.

Локальные сети с централизованным управлением, в которых сервер предназначен только для хранения и выдачи клиентам информации по запросам, называются сетями с выделенным файл-сервером. Системы, в которых на сервере наряду с хранением осуществляется и обработка информации, называются системами «клиент-сервер».

Необходимо отметить, что в серверных локальных сетях клиенту непосредственно доступны только ресурсы серверов. Но рабочие станции, входящие в ЛВС с централизованным управлением, могут одновременно организовать между собой одноранговую локальную сеть со всеми ее возможностями.

Программное обеспечение, управляющее работой ЛВС с централизованным управлением, состоит из двух частей:

  • сетевой операционной системы, устанавливаемой на сервере;
  • программного обеспечения на рабочей станции, представляющего набор программ, работающих под управлением операционной системы, которая установлена на рабочей станции. При этом на разных рабочих станциях в одной сети могут быть установлены различные операционные системы.

В больших иерархических локальных сетях в качестве сетевых ОС используются UNIX и LINUX, которые являются более надежными. Для локальных сетей среднего масштаба наиболее популярной сетевой ОС является Windows 2008 Server.

В зависимости от способов использования сервера в иерархических сетях различают серверы следующих типов:

  • Файловый сервер . В этом случае на сервере находятся совместно обрабатываемые файлы или (и) совместно используемые программы.
  • Сервер баз данных . На сервере размещается сетевая база данных.
  • Принт-сервер . К компьютеру подключается достаточно производительный принтер, на котором может быть распечатана информация сразу с нескольких рабочих станций.
  • Почтовый сервер . На сервере хранится информация, отправляемая и получаемая как по локальной сети.

Достоинства:

  • выше скорость обработки данных;
  • обладает надежной системой защиты информации и обеспечения секретности;
  • проще в управлении по сравнению с одноранговыми сетями.

Недостатки:

  • сеть дороже из-за выделенного сервера;
  • менее гибкая по сравнению с равноправной сетью.

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

Все существующие конфигурации можно разделить на два основных класса: широковещательные и последовательностные.

В случае широковещательной конфигурации ЛВС сигналы, передаваемые одним устройством подключения к физической среде, воспринимаются всеми остальными. В широковещательной ЛВС в произвольный момент времени может работать только одна станция. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Для построения широковещательной конфигурации необходимо применение сравнительно мощных приемников и передатчиков. Следовательно, появляется необходимость ограничения длины кабельных сегментов и числа подключений. В случае превышения ограничений применяется аналоговый усилитель или цифровой повторитель. Кроме того, средства подключения к физической среде выбираются такими, которые не вызывают значительного ослабления сигнала.

Основные типы широковещательных топологий «шина», «дерево» и «звезда» показаны на схемах (рисунок 3).

Рисунок 3 - Типы широковещательных топологий:

а) «шина»; б) «дерево»; в) «звезда»

В случае последовательностной конфигурации ЛВС каждое устройство подключения к физической среде передает информацию только одному устройству. При этом снижаются требования к передатчикам и приемникам, поскольку все станции активно участвуют в передаче.

Основные типы последовательных топологий: «кольцо», «цепочка», «снежинка» и «сетка» показаны на схеме (рисунок 4).

Рисунок 4 - Типы последовательностных топологий «кольцо», «цепочка», «снежинка» и «сетка»

Рассмотрим следующие физические топологии:

  • физическая «шина» (bus);
  • физическая «звезда» (star);
  • физическое «кольцо» (ring);

Шинная топология

  • легко подключить новый ПК;
  • имеется возможность централизованного управления;
  • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии «звезда »:

  • отказ хаба влияет на работу всей сети;
  • большой расход кабеля;

Топология «кольцо»

В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо.

Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

Как правило, в чистом виде топология «кольцо » не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

В общем ИТ-инфраструктуру различных предприятий можно различать по:

  • масштабу;
  • составу компонентов;
  • уровню оборудования и т.д.

Исходя из этого, отдельные виды ИТ-инфраструктур можно представить в виде базовых конфигураций, которые отражены на рисунках 5, 6 и 7.

Рисунок 5 - Небольшая локальная сеть.

Небольшая локальная сеть. Обычно состоит из 1-3 серверов, сетевых коммутаторов, 5-30 рабочих станций.

Рисунок 6 - Локальная сеть и телефонная сеть с МиниАТС.

Локальная сеть и телефонная сеть с МиниАТС. Включает все компоненты «небольшой локальной сети» с добавлением внутренней МиниАТС для коммутации телефонов внутри офиса

Рисунок 7 - Локальная сеть и цифровая телефонная сеть на нескольких объектах.

Локальная сеть и цифровая телефонная сеть на нескольких объектах, объединенная в виртуальную частную сеть. Локальная сеть организации используется для IP-телефонии. Возможно объединение цифровых телефонных сетей подразделений организации через Интернет с помощью виртуальных частных сетей.

Уровень подготовки специалистов, обслуживающих ИТ-инфраструктуру предприятий должен быть очень высоким, требующим ответственности за работу, от которой будет зависеть функционирование и безопасность корпоративных компьютерных сетей.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
NexxDigital - компьютеры и операционные системы