NexxDigital - компьютеры и операционные системы

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Рынок оптоволоконной продукции в России

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимущества оптоволоконного типа связи

  • Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  • Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  • Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;
  • Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  • Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  • Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Элементы волоконно-оптической линии

  • Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  • Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных. Передатчик состоит из параллельно-последовательного преобразователя с синтезатором синхроимпульсов (который зависит от системной установки и скорости передачи информации в битах), драйвера и источника оптического сигнала. Для оптических систем передачи могут быть использованы различные оптические источники. Например, светоизлучающие диоды часто используются в дешёвых локальных сетях для связи на малое расстояние. Однако, широкая спектральная полоса пропускания и невозможность работы в длинах волны второй и третьей оптических окон, не позволяет использовать светодиод в системах телесвязи.

  • Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  • Микросхема cинхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  • Блок преобразования последовательного кода в параллельный
  • Параллельно-последовательный преобразователь
  • Лазерный формирователь

Основной его задачей является подача тока смещения и модулирующего тока для прямого модулирования лазерного диода.

  • Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Одномодовое волокно

При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.

Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей - участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически - на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.

Многомодовое волокно

В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.

Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET Стандарт SDH Скорость передачи
OC 1 - 51,84 Мб/сек
OC 3 STM 1 155,52 Мб/сек
OC 12 STM 4 622,08 Мб/сек
OC 48 STM 16 2,4883 Гб/сек
OC 192 STM 64 9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

Слайд Связь

Связь в технике - передача информации (сигналов) на расстояние.

Типы связи

В зависимости от того, какие явления использовались для кодирования сообщений, можно выделять связь при помощи:

  • электронов - электросвязь (проводная и радиосвязь)
  • излучения фотонов - современное оптоволокно, некоторые виды сигнальных вышек, сигналы фонариком на азбуке Морзе, атмосферная и космическая лазерная связь
  • последовательностей символов из красителей на материале - письмо на бумаге.
  • рельефа или изменения формы материала - оптический диск

В зависимости от среды передачи данных линии связи разделяются на:

  • спутниковые
  • воздушные
  • наземные
  • подводные
  • подземные

В зависимости от того, что переносит сообщение, по физическим принципам, лежащим в основе линий связи, можно выделить следующие типы связи:

  • Проводная и кабельная связь - передача ведётся вдоль направляющей среды.
    • Связь по электрическому кабелю
    • Волоконно-оптическая связь
    • Спутниковая связь - связь с применением космического ретранслятора(ов)
    • Радиорелейная связь - связь с применением наземного ретранслятора(ов)
    • базовых станций
  • Курьерская связь
    • Голубиная почта

В зависимости от того, подвижны источники/получатели информации или нет, различают стационарную (фиксированную ) и подвижную связь (мобильную , связь с подвижными объектами - СПО).



По типу передаваемого сигнала различают аналоговую и цифровую связь.

Сигнал

В зависимости от того, какая информация передаётся, различают аналоговую и цифровую связь. Аналоговая связь - это передача непрерывных сообщений (например, звука или речи). Цифровая связь - это передача информации в дискретной форме (цифровом виде). Однако, дискретные сообщения могут передаваться аналоговыми каналами и наоборот. В настоящее время цифровая связь вытесняет аналоговую (происходит цифровизация),

Линия связи

Линия связи (ЛС)- физическая среда, по которой передаются информационные сигналы аппаратуры передачи данных и промежуточной аппаратуры.

Это и совокупность технических устройств, обеспечивающих передачу сообщений любого вида от отправителя к получателю. Она осуществляется с помощью электрических сигналов, распространяющихся по проводам, или радиосигналов.

Проводные линии связи

Цепь связи - проводники/волокно используемые для передачи одного сигнала. В радиосвязи то же понятие имеет название ствол . Различают кабельную цепь - цепь в кабеле и воздушную цепь - подвешена на опорах.

Проводные линии электросвязи делятся на кабельные, воздушные и оптоволоконные. Кабельные линии прокладывались под землей. Однако вследствие несовершенства конструкции подземные кабельные линии связи уступили место воздушным. Обычный городской телефонный кабель состоит из пучка тонких медных или алюминиевых проводов, изолированных друг от друга и заключенных в общую оболочку. Кабели состоят из разного числа пар проводов, каждая из которых используется для передачи телефонных сигналов. Стремление расширить спектр передаваемых частот и увеличить пропускную способность линий многоканальных систем привело к созданию новых типов кабелей, так называемых коаксиальных . Они используются для передачи телевизионных сигналов высокой частоты, а также для междугородней и международной телефонной связи. Одним проводом в коаксиальном кабеле служит медная или алюминиевая трубка (или оплетка), а другим - вложенная в нее центральная медная жила. Они изолированы друг от друга и имеют одну общую ось. Такой кабель имеет малые потери, почти не излучает электромагнитных волн и поэтому не создает помех. Эти кабели допускают передачу энергии при частоте токов до нескольких миллионов герц и позволяют производить по ним передачу телевизионных программ на большие расстояния.

Рис. Коаксиальный кабель

Оптоволоконные линии связи

В качестве проводных линий связи используются в основном телефонные линии и телевизионные кабели. Наиболее развитой является телефонная проводная связь. Но ей присущи серьезные недостатки: подверженность помехам, затухание сигналов при передаче их на значительные расстояния и низкая пропускная способность. Всех этих недостатков лишены оптоволоконные линии - вид связи, при котором информация передается по оптическим диэлектрическим волноводам ("оптическому волокну").

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния - широко распространенного и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и легкое, оно имеет диаметр всего около 100 мкм.

Оптоволоконные линии отличают от традиционных проводных линий:

  • очень высокая скорость передачи информации (на расстояние более 100 км без ретрансляторов);
  • защищенность передаваемой информации от несанкционированного доступа;
  • высокая устойчивость к электромагнитным помехам;
  • стойкость к агрессивным средам;
  • возможность передавать по одному волокну одновременно до 10 миллионов телефонных разговоров и одного миллиона видеосигналов;
  • гибкость волокон;
  • малые размеры и масса;
  • искро-, взрыво- и пожаробезопасность;
  • простота монтажа и укладки;
  • низкая себестоимость;
  • высокая долговечность оптических волокон - до 25 лет.

Рис. Оптоволоконный кабель (поперечный разрез)

В настоящее время обмен информацией между континентами осуществляется главным образом через подводные оптоволоконные кабели, а не через спутниковую связь. При этом главной движущей силой развития подводных оптоволоконных линий связи является Интернет.

Рис. Оптоволоконная сеть "Транстелеком"

Канал связи может быть:

  • симплексный - то есть допускающей передачу данных только в одном направлении, пример - радиотрансляция, телевидение;
  • полудуплексный поочерёдно ;
  • дуплексным - то есть допускающей передачу данных в обоих направлениях одновременно , пример - телефон.

Разделение (уплотнение) каналов:

Создание нескольких каналов на одной линии связи обеспечивается с помощью разнесения их по частоте, времени, кодам, адресу, длине волны.

  • частотное разделение каналов (ЧРК, FDM) - разделение каналов по частоте, каждому каналу выделяется определённый диапазон частот
  • временное разделение каналов (ВРК, TDM) - разделение каналов во времени, каждому каналу выделяется квант времени (таймслот)
  • кодовое разделение каналов (КРК, CDMA) - разделение каналов по кодам, каждый канал имеет свой код наложение которого на групповой сигнал позволяет выделить информацию конкретного канала.
  • спектральное разделение каналов (СРК, WDM) - разделение каналов по длине волны

Беспроводные линии связи

Радиосвязь - для передачи используются радиоволны в пространстве.

    • ДВ-, СВ-, КВ- и УКВ-связь без применения ретрансляторов
    • Спутниковая связь - связь с применением космических ретрансляторов
    • Радиорелейная связь - связь с применением наземных ретрансляторов
    • Сотовая связь - связь с использованием сети наземных базовых станций

Система связи состоит из оконечного оборудования , источника и получателя сообщения, и устройств преобразования сигнала (УПС) с обеих концов линии. Оконечное оборудование обеспечивает первичную обработку сообщения и сигнала, преобразование сообщений из вида в котором их предоставляет источник (речь, изображение и т. п.) в сигнал (на стороне источника, отправителя) и обратно (на стороне получателя), усиление и т. п. УПС может обеспечивает защиту сигнала от искажений.

Виды современной связи

Почта

Почта (русск. Почта (info) ; от лат. posta ) - вид связи и учреждение для транспортировки известий (например, писем и открыток) и мелких товаров, иногда и людей. Осуществляет регулярную пересылку почтовых отправлений - письменной корреспонденции, периодических изданий, денежных переводов, бандеролей, посылок - преимущественно при помощи транспортных средств.

Почтовая организация в России традиционно является государственным предприятием. Сеть почтовых отделений - крупнейшая организационная сеть в стране.

Письмо - средство сохранения информации, например на бумаге. Перед отправкой письма на конверте нужно нанести почтовые индексы отправителя и получателя в соответствии с нанесенным на нем трафаретом.

Рис. Почтовый конверт с трафаретом почтового индекса

Рис. Почтовый конверт РФ с нанесенным почтовым индексом

Авиапо́чта , или авиацио́нная по́чта (англ. airmail ), - вид почтовой связи, при котором почтовые отправления транспортируются воздушным путём с помощью авиации.

Рис. Конверт авиапочты Российской федерации

Голуби́ная по́чта - один из способов почтовой связи, при котором доставка письменных сообщений производится с помощью почтовых голубей.

Киберпочт@

Главное преимущество электронной почты – скорость доставки независимо от географического положения отправителя письма и получателя. Но и отправитель, и получатель для этого должны иметь компьютеры и доступ к электронной почте.

А если у отправителя эти возможности есть, а у получателя нет? В США государственная почтовая служба обеспечивает доставку электронного письма до ближайшего к адресату отделения связи. Там оно распечатывается и в конверте доставляется почтальоном получателю. Сегодня авиапочта доставляет обычное письмо из России в США за 3-4 недели. Новое комбинированное (электронное – обычное) письмо может быть доставлено за 48 часов. В России также существует план оснащения почтовых отделений доступом к Интернету и электронной почте. Этот проект носит название «Киберпочт@». Во всех почтовых отделениях будут открыты «интернет-салоны» – пункты коллективного доступа в Интернет. В таком салоне можно будет отправить электронное письмо, содержащее любой текст, документ, рисунок, фотографию. Это письмо будет отправлено в ближайшее к получателю почтовое отделение, распечатано, автоматически запечатано в конверт и доставлено почтальоном по любому адресу в течение 48 часов. В интернет-салоне консультант поможет вам научиться пользоваться электронной почтой и сделает цифровую фотографию. Первый такой интернет-салон уже существует на московском почтамте. Стоимость одной страницы такого комбинированного письма – 12 рублей, а на дискете – 6 рублей за 2 Кбайта.

Частью проекта «Киберпочт@» является так называемая «Гибридная почта». Это гибрид современного Интернета и «традиционного почтальона». Теперь любой человек может принести в почтовое отделение обыкновенное, написанное на бумаге письмо. Там его введут в компьютер и передадут по электронной почте в ближайшее к адресату почтовое отделение. В нем это письмо распечатают на принтере, и почтальон отнесет его адресату. Тогда письмо дойдет в любой город страны не позднее, чем через 48 часов, так как из процесса доставки исчезает самый долгий этап – перевозка письма, написанного на бумаге из города в город. Так письмо по скорости доставки сравняется с телеграммой. Но стоимость такого письма во много раз меньше, чем телеграммы. Ведь стоимость только одного слова телеграммы при передаче по России составляет 80 коп., а стоимость одной страницы гибридного письма формата А4 и числом знаков 2000 составляет всего 12 руб. При этом на странице формата А4 помещается несколько сотен слов!

Письмо может быть закрытым, т.е. получателю письмо доставляется в конверте, или открытым, т.е. письмо доставляется без конверта.
Можно сдавать письма по Гибридной почте, как на бумаге, так и на магнитном носителе.

Позднее к проекту «Гибридная почта» присоединили дополнение и для пользователей, владеющих Интернетом и электронной почтой. Оно позволяет им отправить электронное письмо адресату, не владеющему электронной почтой. Это письмо попадает в ближайшее к адресату почтовое отделение, в нем распечатывается и запечатывается в конверт. Этот конверт почтальон относит адресату - получателю письма. Этим существенно сокращается время его доставки.

Пневмати́ческая по́чта , или пневмопо́чта (от греч. πνευματικός - воздушный) , - система перемещения штучных грузов под действием сжатого или, наоборот, разрежённого воздуха. Закрытые пассивные капсулы (контейнеры) перемещаются по системе трубопроводов, перенося внутри себя нетяжёлые грузы, документы.

Рис. Терминал пневмопочты

Используется в организациях для пересылки оригиналов документов, например, в банках, складах и библиотеках, наличных денег в супермаркетах и кассах банков, анализов, историй болезней, рентгеновских снимков в лечебных учреждениях, а так же проб и образцов на промышленных предприятиях.

Телегра́ф (от др.-греч. τῆλε - «далеко» + γρᾰ́φω - «пишу») - средство для передачи сигнала по проводам или другим каналам электросвязи. В России телеграфная связь существует и поныне. В некоторых странах сочли телеграф устаревшим видом связи и свернули все операции по отправлению и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 году. В январе 2006 года старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставлению телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все ещё поддерживают сервис по отправлению и доставке традиционных телеграфных сообщений.

Телегра́ф (от др.-греч. τῆλε - «далеко» + γρᾰ́φω - «пишу») - средство для передачи сигнала по проводам или другим каналам электросвязи.

Телегра́мма - сообщение, посланное по телеграфу, одному из первых видов связи, использующему электрическую передачу информации.

Рис. Телеграмма

Телефонная связь

Телефо́н (от греч. τῆλε - далеко и φωνή - голос) - устройство для передачи и приёма звука на расстояние посредством электрических сигналов.Телефонная связь применяется для передачи и приема человеческой речи.

Применение

Оптоволоконная связь находит всё более широкое применение во всех областях - от компьютеров и бортовых космических, самолётных и корабельных систем, до систем передачи информации на большие расстояния, например, в настоящее время успешно используется волоконно-оптическая линия связи Западная Европа - Япония , большая часть которой проходит по территории России . Кроме того, увеличивается суммарная протяжённость подводных волоконно-оптических линий связи между континентами .

Оптоволоконный канал в каждый дом (англ. Fiber to the premises (FTTP ) или Fiber to the home (FTTH )) - термин, используемый телекоммуникационными провайдерами , для обозначения широкополосных телекоммуникационных систем, базирующихся на проведении оптоволоконного канала и его завершения на территории конечного пользователя путём установки терминального оптического оборудования для предоставления комплекса телекоммуникационных услуг (Triple Play), включающего:

  • высокоскоростной доступ в Интернет;
  • услуги телефонной связи;
  • услуги телевизионного приёма.

Стоимость использования оптоволоконной технологии уменьшается, что делает данную услугу конкурентноспособной по сравнению с традиционными услугами. Прогноз KMI Research оценивает объём рынка FTTP, включая оборудование, кабельные системы в 28 миллиардов рублей к году.

История

Историю систем передачи данных на большие расстояния следует начинать с древности, когда люди использовали дымовые сигналы. С того времени эти системы кардинально улучшились, появились сначала телеграф , затем коаксиальный кабель . В своем развитии эти системы рано или поздно упирались в фундаментальные ограничения: для электрических систем это явление затухания сигнала на определенном расстоянии, для СВЧ - несущая частота. Поэтому продолжались поиски принципиально новых систем, и во второй половине XX века решение было найдено - оказалось, что передача сигнала с помощью света гораздо эффективнее как электрического, так и СВЧ-сигнала.

В 1966 Као и Хокман из STC Laboratory (STL) представили оптические нити из обычного стекла, которые имели затухание в 1000 дБ/км (в то время как затухание в коаксиальном кабеле составляло всего 5-10 дБ/км) из-за примесей, которые в них содержались и которые в принципе можно было удалить.

Существовало 2 глобальных проблемы при разработке оптических систем передачи данных: источник света и носитель сигнала. Первая разрешилась с изобретением лазеров в 1960, вторая - с появлением высококачественных оптоволоконных кабелей в 1970. Это была разработка Corning Glass Works. Затухание в таких кабелях составляло около 20 дБ/км, что было вполне приемлемым для передачи сигнала в телекоммуникационных системах. В то же время, были разработаны достаточно компактные полупроводниковые GaAs лазеры.

После интенсивных исследований в период с 1975 по 1980 гг появилась первая коммерческая оптоволоконная система, оперировавшая светом с длиной волны 0.8 мкм и использовавшая AsGa полупроводниковый лазер. Битрейт систем первого поколения составлял 45 Мбит/с, расстояние между повторителями - 10 км.

22 апреля 1977 года в Лонг Бич штата Калифорния General Telephone and Electronics впервые использовали оптический канал для передачи телефонного трафика на скорости 6 Мбит/с.

Второе поколение оптоволоконных систем было разработано для коммерческого использования в начале 1980-х. Они оперировали светом с длиной волны 1,3 мкм от InGaAsP лазеров. Однако такие системы все еще были ограниченны из-за рассеивания, возникающего в канале. Однако уже в 1987 году эти системы оперировали на скорости до 1,7 Гбит/с, расстояние между повторителями - 50 км.

Первый трансатлантический телефонный оптоволоконный кабель - ТАТ-8 - был введен в эксплуатацию 1988 году. В его основе лежала оптимизированная технология Desurvire усиления лазера.

ТАТ-8 разрабатывался как первый подводный оптоволоконный кабель между Соединенными Штатами и Европой.

См. также

Смотреть что такое "Оптоволоконная связь" в других словарях:

    На рынке доступа в Интернет для физических лиц в Молдове доминируют три провайдера StarNet и Интерднестрком. Доступ к Интернету для юридических лиц преимущественно занят тремя провайдерами Arax и Telemedia Group. Но это не единственные… … Википедия

    Оптоволоконная связь средство связи на больших расстояниях, построенное на основе волоконно оптических линий связи. Представляет собой связь между источником оптического излучения (полупроводниковым лазером или светодиодом) и приёмником… … Википедия

    Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM, со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность, с помощью которой легко было бы передать всю… … Википедия

    Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM, со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность, с помощью которой легко было бы передать всю… … Википедия

    Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM, со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность, с помощью которой легко было бы передать всю… … Википедия

    Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM, со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность, с помощью которой легко было бы передать всю… … Википедия

    Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM, со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность, с помощью которой легко было бы передать всю… … Википедия

    Коммутируемый удалённый доступ (англ. dial up) сервис, позволяющий компьютеру, используя модем и телефонную сеть общего пользования, подключаться к другому компьютеру (серверу доступа) для инициализации сеанса передачи данных (например, для… … Википедия

Волоконно-оптическими называют линии, предназначенные для передачи информации в оптическом диапазоне. Согласно данным советского Информбюро, на конец 80-х темп роста применения волоконно-оптических линий составил 40%. Эксперты Союза предполагали полный отказ некоторых стран от медной жилы. Съезд постановил на 12-ю пятилетку 25% прирост объёма линий связи. Тринадцатая, также призванная развивать волоконную оптику, застала развал СССР, появились первые сотовые операторы. Кстати, прогноз экспертов относительно роста потребности в квалифицированных кадрах провалился…

Принцип действия

Каковы причины резкого роста популярности высокочастотных сигналов? Современные учебники упоминают снижение потребности в регенерации сигнала, стоимости, повышение ёмкости каналов. Советские инженеры вызнали, рассуждая иначе: медный кабель, броня, экран берут 50% мирового производства меди, 25% – свинца. Недостаточно известный факт стал главной причины оставления спонсорами Николы Теслы, проекта башни Ворденклифф (название дала фамилия мецената, пожертвовавшего землю). Известный сербский учёный возжелал передавать информацию, энергию беспроводным путём, напугав немало локальных хозяев медеплавильных заводов. 80 лет спустя картина изменилась кардинально: люди осознали необходимость сбережения цветных металлов.

Материалом изготовления волокна служит… стекло. Обычный силикат, сдобренный изрядной долей модифицирующих свойства полимеров. Советские учебники, помимо указанных причин популярности новой технологии, называют:

  1. Малое затухание сигналов, явившееся причиной снижения потребности в регенерации.
  2. Отсутствие искрения, следовательно, пожаробезопасность, нулевая взрывоопасность.
  3. Невозможность короткого замыкания, пониженная потребность в обслуживании.
  4. Нечувствительность к электромагнитным помехам.
  5. Низкий вес, сравнительно малые габариты.

Первоначально оптоволоконные линии должны были объединить крупные магистрали: меж городами, пригородами, АТС. Эксперты СССР назвали кабельную революцию сродни появлению твердотельной электроники. Развитие технологии позволило построить сети, лишённые токов утечки, перекрёстных помех. Участок длиной сотню км лишён активных методов регенерации сигнала. Бухта одномодового кабеля обычно составляет 12 км, многомодового – 4 км. Последнюю милю чаще покрывают медью. Провайдеры привыкли предназначать оконечные участки индивидуальным пользователям. Отсутствуют высокие скорости, приёмопередатчики дёшевы, возможность подвести одновременно питание устройству, простота использования линейных режимов.

Передатчик

Типичным формирователем луча выступают полупроводниковые светодиоды, включая твердотельные лазеры. Ширина спектра сигнала, излучаемого типичным p-n-переходом, составляет 30-60 нм. КПД первых твердотельных устройств едва достигал 1%. Основой связных светодиодов чаще выступает структура индий-галлий-мышьяк-фосфор. Излучая более низкую частоту (1,3 мкм), приборы обеспечивают значительное рассеивание спектра. Результирующая дисперсия сильно ограничивает битрейт (10-100 Мбит/с). Поэтому светодиоды пригодны для построения локальных сетевых ресурсов (дистанция 2-3 км).

Частотное деление с мультиплексированием осуществляется многочастотными диодами. Сегодня несовершенные полупроводниковые структуры активно вытесняются вертикальными излучающими лазерами, значительно улучшающими спектральные характеристики. повышающими скорость. Цена одного порядка. Технология вынужденного излучения приносит гораздо более высокие мощности (сотни мВт). Когерентное излучение обеспечивает КПД одномодовых линий 50%. Эффект хроматической дисперсии снижается, позволяя повысить битрейт.

Малое время рекомбинации зарядов позволяет легко модулировать излучение высокими частотами питающего тока. Помимо вертикальных применяют:

  1. Лазеры с обратной связью.
  2. Резонаторы Фабри-Перо.

Высокие битрейты дальних линий связи достигаются применением внешних модуляторов: электро-абсорбционные, интерферометры Маха – Цендера. Внешние системы устраняют необходимость применения линейной частотной модуляции напряжением питания. Обрезанный спектр дискретного сигнала передаётся дальше. Дополнительно разработаны другие методики кодирования несущей:

  • Квадратурная фазовая манипуляция.
  • Ортогональное мультиплексирование с частотным разделением.
  • Амплитудная квадратурная модуляция.

Процедуру осуществляют цифровые сигнальные процессоры. Старые методики компенсировали лишь линейную составляющую. Беренджер выразил модулятор рядами Вина, ЦАП и усилитель смоделировал усечёнными, времянезависимыми рядами Вольтерры. Кхана предлагает использовать полиномиальную модель передатчика вдобавок. Каждый раз коэффициенты рядов находят, используя архитектуру непрямого изучения. Дутель записал множество распространённых вариантов. Фазная перекрёстная корреляция и квадратурные поля имитируют несовершенство систем синхронизации. Аналогично компенсируются нелинейные эффекты.

Приёмники

Фотодетектор совершает обратное преобразование свет – электричество. Львиная доля твёрдотельных приёмников использует структуру индий-галлий-мышьяк. Иногда встречаются pin-фотодиоды, лавинные. Структуры металл-полупроводник-металл идеально подходят для встраивания регенераторов, коротковолновых мультиплексоров. Оптикоэлектрические конвертеры часто дополняют трансимпедансными усилителями, ограничителями, производящими цифровой сигнал. Затем практикуют восстановление синхроимпульсов с фазовой автоподстройкой частоты.

Передача света стеклом: история

Явление рефракции, делающее возможной тропосферную связь, нелюбимо учениками. Сложные формулы, неинтересные примеры убивают любовь студента к знаниям. Идею световода родили далёкие 1840-е годы: Дэниэл Колладон, Жак Бабинэ (Париж) пытались приукрасить собственные лекции заманчивыми, наглядными экспериментами. Преподаватели средневековой Европы плохо зарабатывали, поэтому изрядный приток студентов, несущих деньги, выглядел желанной перспективой. Лекторы заманивали публику любыми способами. Некий Джон Тиндал воспользовался идеей 12 лет спустя, гораздо позже выпустив книгу (1870), рассматривающую законы оптики:

  • Свет проходит границу раздела воздух-вода, наблюдается рефракция луча относительно перпендикуляра. Если угол касания луча к ортогональной линии превышает 48 градусов, фотоны перестают покидать жидкость. Энергия полностью отражается назад. Предел назовём лимитирующим углом среды. Водный равен 48 градусов 27 минут, у силикатного стекла – 38 градусов 41 минута, алмаза – 23 градуса 42 минуты.

Зарождение XIX столетия принесло линии Петербург – Варшава световой телеграф протяжённостью 1200 км. Регенерация операторами послания проводилась каждые 40 км. Сообщение шло несколько часов, мешали погода, видимость. Появление радиосвязи вытеснило старые методики. Первые оптические линии датированы концом XIX века. Новинка понравилась… медикам! Гнутое стеклянное волокно позволяло освещать любые полости человеческого тела. Историки предлагают следующую временную шкалу развития событий:


Идею Генри Сэнт-Рене продолжили поселенцы Нового света (1920-е), задумавшие улучшить телевидение. Кларенс Ханселл, Джон Логи Бэйрд стали пионерами. Десять лет спустя (1930) студент-медик Хайнрих Ламм доказал возможность передачи стеклянными направляющими изображения. Ищущий знаний задумал осмотреть внутренности тела. Качество изображения хромало, попытка получить Британский патент провалилась.

Рождение волокна

Независимо голландский учёный Абрахам ван Хил, британец Харольд Хопкинс, Нариндер Сингх Капани изобрели (1954) волокно. Заслуга первого в идее покрыть центральную жилу прозрачной оболочкой, имевшей низкий коэффициент преломления (близкий к воздуху). Защита от царапин поверхности сильно улучшила качество передачи (современники изобретателей видели главное препятствие использования волоконных линий в больших потерях). Британцы тоже внесли серьёзный вклад, собрав пучок волокон численностью 10.000 штук, передали изображение на дистанцию 75 см. Заметка «Гибкий фиброскоп, использующий статическое сканирование» украсила журнал Nature (1954).

Это интересно! Нариндер Сингх Капани ввёл термин фиброволокно заметкой в журнале Американская наука (1960).

1956 год принёс миру новый гибкий гастроскоп, авторы Базиль Хиршовиц, Вильбур Петерс, Лоуренс Кертисс (Университет Мичиган). Особенностью новики являлась стеклянная оболочка волокон. Элиас Снитцер (1961) обнародовал идею создания одномодового волокна. Столь тонкого, что внутри умещалось лишь одно пятнышко интерференционной картины. Идея помогла медикам осмотреть внутренности (живого) человека. Потери составили 1 дБ/м. Потребности коммуникаций простирались гораздо дальше. Требовалось достичь порога 10-20 дБ/км.

1964 год считают переломным: жизненно важную спецификацию опубликовал доктор Као, введя теоретические основы дальней связи. Документ активно использовал приведённую выше цифру. Учёный доказал: снизить потери поможет стекло высшей степени очистки. Германский физик (1965) Манфред Бёрнер (Телефункен Ресёрч Лабс, Ульм) представил первую работоспособную телекоммуникационную линию. NASA немедленно передало вниз лунные снимки, используя новинки (разработки были секретными). Несколько лет спустя (1970) трое работников Корнинг Глэс (см. начало топика) подали патент, реализующий технологический цикл выплавки оксида кремния. Три года бюро оценивало текст. Новая жила увеличила пропускную способность канала в 65000 раз относительно медного кабеля. Команда доктора Као немедля сделала попытку покрыть значительное расстояние.

Это интересно! 45 лет спустя (2009) Као вручили Нобелевскую премию по физике.

Военные компьютеры (1975) противовоздушной обороны США (секция NORAD, Шайенские горы) получили новые коммуникации. Оптический интернет появился очень давно, раньше персональных компьютеров! Двумя годами позже тестовые испытания телефонной линии длиной 1,5 мили (пригород Чикаго) успешно передали 672 голосовых канала. Стеклодувы трудились неустанно: начало 80-х привнесло появление волокна с затуханием 4 дБ/км. Оксид кремния заменили другим полупроводником – германием.

Скорость производства высококачественного кабеля технологической линией составила 2 м/с. Хими Томас Менса разработал технологию, повысившую двадцатикратно указанный лимит. Новинка, наконец, стала дешевле медного кабеля. Дальнейшее изложено выше: последовал всплеск внедрения новой технологии. Шаг расстановки репитеров составил 70-150 км. Волоконный усилитель, легированный ионами Эрбия, резко снизил стоимость возведения линий. Времена тринадцатой пятилетки принесли планете 25 миллионов километров волоконно-оптических сетей.

Новый толчок развитию дало изобретение фотонных кристаллов. Первые коммерческие модели принёс 2000 год. Периодичность структур позволила значительно повысить мощность, конструкция волокна гибко подстраивалась, следуя частоте. В 2012 году Телеграфная и телефонная компания Ниппона достигла скорости 1 петабит/с на дальности 50 км одним-единственным волокном.

Военная промышленность

Достоверно известна история шествия военной промышленности США, опубликованной в Монмаут Месседж. В 1958 году менеджер по кабельному хозяйству форта Монмаут (Сигнал Корпс Лабс армии Соединённых Штатов) рапортовал о вреде молний, осадков. Чиновник потревожил исследователя Сэма Ди Вита, попросив найти замену зеленеющей меди. Ответ содержал предложение попробовать стекло, фибер, световые сигналы. Однако инженеры дяди Сэма того времени оказались бессильны решить задачку.

Жарким сентябрём 1959 Ди Вита спросил лейтенанта второго ранга Ричарда Штурцебехера, известна ли тому формула стекла, способного передавать оптический сигнал. Ответ содержал сведения, касающиеся оксида кремния – пробы на базе Университета Альфреда. Измеряя коэффициент рефракции материалов микроскопом, Ричард нажил головную боль. 60-70% стеклянная пудра свободно пропускала лучезарный свет, раздражая глаза. Держа в уме необходимость получения чистейшего стекла, Штурцебехер изучал современные методики производства при помощи хлорида кремния IV. Ди Вита нашёл материал пригодным, решив предоставить правительству переговоры со стеклодувами компании Корнинг.

Чиновник отлично знал рабочих, однако решил предать дело огласке, дабы завод получил государственный контракт. Между 1961 и 1962 идея использования чистого оксида кремния была передана исследовательским лабораториям. Федеральные ассигнования составили порядка 1 млн. долларов (промежуток 1963-1970). Программа окончилась (1985) развитием многомиллиардной индустрии производства оптоволоконных кабелей, начавших стремительно замещать медные. Ди Вита остался работать, консультируя промышленность, прожив 97 лет (год смерти – 2010).

Разновидности кабелей

Кабель формируют:

  1. Ядро.
  2. Оболочка.
  3. Защитный кожух.

Волокно реализует полное отражение сигнала. Материалом первых двух компонентов традиционно выступает стекло. Иногда находят дешёвую замену – полимер. Оптические кабели объединяют сплавлением. Выравнивание ядра потребует сноровки. Мультимодовый кабель толщиной свыше 50 мкм паять проще. Две глобальные разновидности различаются количеством мод:

  • Мультимодовый снабжён толстым ядром (свыше 50 мкм).
  • Одномодовый значительно тоньше (менее 10 мкм).

Парадокс: кабель меньших размеров обеспечивает дальнюю связь. Стоимость четырёхжильного трансатлантического составляет 300 млн. долларов. Сердцевину покрывают светоустойчивым полимером. Журнал Новый учёный (2013) обнародовал опыты научной группы Университета Саутгемптона, покрывших дальность 310 метров… волноводом! Пассивный диэлектрический элемент показал скорость 77,3 Тбит/с. Стены полой трубки образованы фотонным кристаллом. Информационный поток двигался со скорость 99,7% световой.

Фотонно-кристаллический фибер

Новая разновидность кабелей образована набором трубок, конфигурация напоминает скруглённые пчелиные соты. Фотонные кристаллы, напоминают природный перламутр, образуя периодические конформации, отличающиеся коэффициентом преломления. Некоторые длины волн внутри таких трубок затухают. Кабель демонстрирует полосу пропускания, луч претерпевая брэгговскую рефракцию отражается. Благодаря наличию запрещённых зон когерентный сигнал двигается вдоль световода.

Введение

1. Основная часть

1. Волоконно-оптические линии связи как понятие

Физические особенности

Технические особенности

Есть в волоконной технологии и свои недостатки

Оптическое волокно и его виды

Волоконно-оптический кабель

Электронные компоненты систем оптической связи

Лазерные модули для ВОЛС

Фотоприемные модули для ВОЛС

Применение ВОЛС в вычислительных сетях

Заключение

Список используемой литературы


Введение

С начала развития компьютерной техники прошло немного немало шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”. Они и определили новый вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла программа MS – DOS, а в 1990 – Windows-3.0, и далее пошло стремительное совершенствование “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между компьютером и человеком, тотальное проникновение компьютерных технологий в бытовую сферу. 1986 год – рождение Интернета, глобальной сети, охватившей практически все страны мира, поставляющей каждому пользователю текущую информацию. Получив настолько быструю обработку данных, люди пришли к выводу, что можно перестать терять время и деньги, также на передачу этих данных, а также увеличить скорость доступа, и скорость передачу данных. Это стало возможным благодаря использованию новых видов связи, таких как оптическое волокно, пришедших на замену банальным алюминиевым и медным проводам.

Тема об оптоволоконной линии связи, является актуальной на данный момент времени, так как число людей на планете растет, и потребности в улучшение жизни то же увеличиваются. Ещё с древних времён человек совершенствуется: улучшает свои знания, стремится улучшить жизнь, создавая и моделируя предметы быта. И сейчас многие фирмы создают телевизоры, телефоны, магнитофоны, компьютера и многое другое, то есть – бытовую технику, которая упрощают жизнь человека. Но для внедрения этих новых технологий нужно изменять или улучшать старое. В пример этому можно привести наши линии связи на коаксиальном (медном) кабеле, про которые уже было упомянуто выше. Их скорость мала, даже для передачи видеоинформации. А волоконная оптика как раз то, что нам нужно - её скоростью передачи информации очень велика. Плюс, низкие потери при передаче сигнала позволяет прокладывать значительные по дальности участки кабеля без установки дополнительного оборудования. Оптоволокно имеет хорошую помехозащищенность, легкость прокладки и долгие сроки работы кабеля практически в любых условиях. И, кроме того, оптоволокно не имеет смысла воровать с целью сдачи на металлолом. В настоящее время оптоволокно находит свое применение преимущественно в теле - и интернет – коммуникациях. Но считается, что сегодняшнее использование оптоволокна лишь вершина айсберга его применения.


1. Волоконно-оптические линии связи как понятие

Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно". Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. К примеру, В настоящее время волоконно-оптические кабели проложены по дну Тихого и Атлантического океанов и практически весь мир "опутан" сетью волоконных систем связи (Laser Mag.-1993.-№3; Laser Focus World.-1992.-28, №12; Telecom. mag.-1993.-№25; AEU: J. Asia Electron. Union.-1992.-№5). Европейские страны через Атлантику связаны волоконными линиями связи с Америкой. США, через Гавайские острова и остров Гуам - с Японией, Новой Зеландией и Австралией. Волоконно-оптическая линия связи соединяет Японию и Корею с Дальним Востоком России. На западе Россия связана с европейскими странами Петербург - Кингисепп - Дания и С.-Петербург – Выборг - Финляндия, на юге - с азиатскими странами Новороссийск - Турция. В Европе, также, как и в Америке, давно уже нашли широкое применение практически во всех сферах связи, энергетики, транспорта, науки, образования, медицины, экономики, обороны, государственно-политической и финансовой деятельности. Итак, основания считать оптоволокно самой перспективной средой для передачи больших потоков информации вытекает из ряда особенностей, присущих оптическим волноводам.

2. Физические особенности

Широкополосность оптических сигналов, обусловленная чрезвычайно высокой несущей частотой. Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 1 Терабит/с.

Говоря другими словами, по одному волокну можно передать одновременно10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут. А это означает, что до сих пор при столь сильной загруженности нашего интернета не нашлось столько информации, которая при одновременной передачи привела бы к уменьшению скорости передаваемого потока данных.

Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Иными словами потеря сигнала за счет сопротивления материала проводника. Лучшие образцы российского волокна имеют столь малое затухание, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фтороцирконатные волокна. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.


3. Технические особенности

Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди, отсюда и сравнительно не большая цена и практически отсутствие случаев кражи с целью сдачи на металлолом

Оптические волокна имеют диаметр около 1 – 0,2 мм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.

Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.

Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации. К примеру вы все же решили это сделать. Для обнаружения перехватываемого сигнала вам понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видимость интерференционной картины может быть ослаблена большим количеством сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие, без замены самого кабеля.

4. Есть в волоконной технологии и свои недостатки

При создании линии связи требуются активные высоконадежные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение.

Точность изготовления таких элементов линии должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

Другой недостаток заключается в том, что для монтажа оптических волокон требуется дорогостоящее технологическое оборудование. а) инструменты для оконцовки. б) коннекторы. в) тестеры. г) муфты и спайс- кассеты.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
NexxDigital - компьютеры и операционные системы