NexxDigital - компьютеры и операционные системы

Таблица 9.1. Иерархия подсистемы памяти ПК
Тип ЗУ 1985 г. 2000 г.
Время выборки Типичный объем Цена / байт Время выборки Типичный объем Цена / байт
1 Сверхоперативные ЗУ (регистры) 0,2 5 нс 16/32 бит $ 3 - 100 0,01 1 нс 32/64/128 бит $ 0,1 10
2 Быстродействующее буферное ЗУ (кэш) 20 100 нс 8Кб - 64Кб ~ $ 10 0,5 - 2 нс 32Кб 1Мб $ 0,1 - 0,5
3 Оперативное (основное) ЗУ ~ 0,5 мс 1Мб - 256Мб $ 0,02 1 2 нс 20 нс 128Мб - 4Гб $ 0,01 0,1
4 Внешние ЗУ (массовая память) 10 - 100 мс 1Мб - 1Гб $ 0,002 - 0,04 5 - 20 мс 1Гб - 0,5Тб $ 0,001 - 0,01

Регистры процессора составляют его контекст и хранят данные, используемые исполняющимися в конкретный момент командами процессора. Обращение к регистрам процессора происходит, как правило, по их мнемоническим обозначениям в командах процессора.

Кэш используется для согласования скорости работы ЦП и основной памяти. В вычислительных системах используют многоуровневый кэш : кэш I уровня (L1), кэш II уровня (L2) и т.д. В настольных системах обычно используется двухуровневый кэш , в серверных - трехуровневый. Кэш хранит команды или данные, которые с большой вероятностью в ближайшее время поступят процессору на обработку. Работа кэш-памяти прозрачна для программного обеспечения, поэтому кэш- память обычно программно недоступна.

Оперативная память хранит, как правило, функционально-законченные программные модули (ядро операционной системы, исполняющиеся программы и их библиотеки, драйверы используемых устройств и т.п.) и их данные, непосредственно участвующие в работе программ, а также используется для сохранения результатов вычислений или иной обработки данных перед пересылкой их во внешнее ЗУ, на устройство вывода данных или коммуникационные интерфейсы.

Каждой ячейке оперативной памяти присвоен уникальный адрес . Организационные методы распределения памяти предоставляют программистам возможность эффективного использования всей компьютерной системы. К таким методам относят сплошную ("плоскую") модель памяти и сегментированную модель памяти. При использовании сплошной модели ( flat model ) памяти программа оперирует единым непрерывным адресным пространством линейным адресным пространством, в котором ячейки памяти нумеруются последовательно и непрерывно от 0 до 2n-1, где n - разрядность ЦП по адресу. При использовании сегментированной модели (segmented model ) для программы память представляется группой независимых адресных блоков, называемых сегментами. Для адресации байта памяти программа должна использовать логический адрес , состоящий из селектора сегмента и смещения. Селектор сегмента выбирает определенный сегмент, а смещение указывает на конкретную ячейку в адресном пространстве выбранного сегмента.

Организация памяти МПС. Сегментация памяти. Вычисление адреса. Внутренняя КЭШ память .

Память микропроцессорной системы выполняет функцию временно­го или постоянного хранения данных и команд. Объем памяти определяет допустимую сложность выполняемых системой алгоритмов, а также в некоторой степени и скорость работы системы в целом. Модули памяти выполняются на микросхемах памяти (оперативной или постоянной). Все чаще в составе микропроцессорных систем используется флэш-память (англ. – flash memory), которая представляет собой энергонезависимую память с возможностью многократной перезаписи содержимого.

Для подключения модуля памяти к системной магистрали используются блоки сопряжения, которые включают в себя дешифратор (селектор) адреса, схему обработки управляющих сигналов магистрали и буферы данных (рисунок7.4.1).

Рисунок 7.4.1. Схема подключения модуля памяти.

В пространстве памяти микропроцессорной системы обычно выделяются несколько особых областей, которые выполняют специальные фун­кции. К ним относятся:

– память программы начального запуска, выполненная на ПЗУ или флэш-памяти;

– память для стека или стек (Stack) – это часть оперативной памяти, пред­назначенная для временного хранения данных;

– таблица векторов прерываний, содержащая адреса начала программ обработки прерываний;

– память устройств, подключенных к системной шине.

Все остальные части пространства памяти, как правило, имеют универсальное назначение. В них могут располагаться как данные, так и программы (конечно, в случае одношинной архитектуры).

Часто простран­ство памяти делится на сегменты с программно изменяемым адресом начала сегмента и с установленным размером сегмента. Например, в процессоре Intel 8086 сегментирование памяти организовано следующим образом.

Вся память системы представляется не в виде непрерывного пространства, а в виде нескольких кусков – сегментов заданного размера (по 64 Кбайта), положение которых в пространстве памяти можно изменять программным путем.

Для хранения кодов адресов памяти используются не отдельные регистры, а пары регистров:

Сегментный регистр определяет адрес начала сегмента (то есть положение сегмента в памяти);

Регистр указателя (регистр смещения) определяет положение рабочего адреса внутри сегмента.

При этом физический 20-разрядный адрес памяти, выставляемый на внешнюю шину адреса, образуется так, как показано на рисунке7.4.2, то есть путем сложения смещения и адреса сегмента со сдвигом на 4 бита.

Рисунок 7.4.2. Формирование физического адреса памяти из адреса сегмента и смещения.

Положение этого адреса в памяти показано на рисунке7.4.3.

Рисунок 7.4.3. Положение физического адреса в памяти

Сегмент может начинаться только на 16-байтной границе памяти (так как адрес начала сегмента, по сути, имеет четыре младших нулевых разряда, как видно из рисунка 7.4.2), то есть с адреса, кратного 16. Эти допустимые границы сегментов называются границами параграфов.

Отметим, что введение сегментирования, прежде всего, связано с тем, что внутренние регистры процессора 16-разрядные, а физический адрес памяти 20-разрядный (16-разрядный адрес позволяет использовать память только в 64 Кбайт, что явно недостаточно).

Кэш–память располагается между основной памятью (ОП) и центральным процессором для снижения затрат времени на обращение ЦП к ОП.

Идея кэш-памяти основана на прогнозировании наиболее вероятных обращений ЦП к ОП. Наиболее «вероятные» данные и команды копируются в быструю, работающую в темпе ЦП, кэш-память до начала их непосредственного использования ЦП, так что обращение к данным и командам, используемым в текущий момент времени, может происходить быстро, без обращения к ОП. В основу такого подхода положен принцип локальности программы или, как еще говорят, гнездовой характер обращений, имея в виду, что адреса последовательных обращений к ОП образуют, как правило, компактную группу. При обращении к ОП в кэш-память копируются не отдельные данные, а блоки информации, включающие те данные, которые с большой степенью вероятности будут использованы в ЦП на последующих шагах работы. В связи с этим последующие команды выбираются ЦП уже не из ОП, а из быстрой кэш-памяти. Когда ЦП нужно считать или записать некоторое данное в ОП, он сначала проверяет его наличие в кэш-памяти. Эффективность кэш-системы зависит от размера блока и алгоритма программ.

Глава 11

Организация памяти вычислительных систем

В вычислительных системах, объединяющих множество параллельно работающихпроцессоров или машин, задача правильной организации памяти является одной из важнейших. Различие между быстродействием процессора и памяти всегда было камнем преткновения в однопроцессорных ВМ. Многопроцессорность ВС приводит еще к одной проблеме - проблеме одновременного доступа к памяти со стороны нескольких процессоров.

В зависимости от того, каким образом организована память многопроцессорных (многомашинных) систем, различают вычислительные системы с общей памятью (shared memory) и ВС с распределенной памятью (distributed memory). В системах с общей памятью (ее часто называют также совместно используемой или разделяемой памятью) намять ВС рассматривается как общин ресурс, и каждый из процессоров имеет полный доступ ко всему адресному пространству. Системы с обшей памятью называют сильно связанными (closely coupled systems). Подобное построение вычислительных систем имеет место как в классе SIMD, так и в классе MIMD. Иногда, чтобы подчеркнуть это обстоятельство, вводят специальные подклассы, используя для их обозначения аббревиатуры SM-SIMD (Shared Memory SIMD) и SM-MIMD (Shared Memory MIMD).

В варианте с распределенной памятью каждому из процессоров придается собственная память. Процессоры объединяются в сеть и могут при необходимости обмениваться данными, хранящимися в их памяти, передавая друг другу так называемые сообщения. Такой вид ВС называют слабо связанными (loosely coupled systems). Слабо связанные системы также встречаются как в классе SIMD, так и В классе MIMD, и иной раз, чтобы подчеркнуть данную особенность, вводят подклассы DM-SIMD (Distributed Memory SIMD) и DM-MIMD (Distributed Memory MIMD).

В некоторых случаях вычислительные системы с общей памятью называют мультипроцессорами, а системы с распределенной памятью - мцльтикомпьютерами.

Различие между общей и распределенной памятью - это разницу в структуре виртуальной памяти, то есть в том, как память выглядит со стороны процессора. Физически почти каждая система памяти разделена на автономные компоненты доступ к которым может производиться независимо. Общую память от распределенной отлипает то, каким образом подсистема памяти интерпретирует поступивший от процессора адрес ячейки. Для примера положим, что процессор выполняет команду load RO, i, означающую «Загрузить регистр R0 содержимым ячейки i». В случае общей памяти i - это глобальный адрес, и для любого процессора указывает на одну и ту же ячейку. В распределенной системе памяти i - это локальный адрес Если два процессора выполняют команду load RO, i, то каждый из них обращается к i-й ячейке в своем локальной памяти, то есть к разным ячейкам, и в регистры R0 могут быть загружены неодинаковые значения.

Различие между двумя системами памяти должно учитываться программистом, поскольку оно определяет способ взаимодействия частей распараллеленной программы. В варианте с общей памятью достаточно создать в памяти структуру данных и передавать в параллельно используемые подпрограммы ссылки на эту структуру. В системе с распределенной памятью необходимо в каждой локальной памяти иметь копию совместно используемых данных. Эти копии создаются путем вкладывания разделяемых данных в сообщения, посылаемые другим процессорам.

Память с чередованием адресов

Физически память вычислительной системы состоит из нескольких модулей (банков), при этом существенным вопросом является то, как в этом случае распределено адресное пространство (набор всех адресов, которые может сформировать процессор). Один из способов распределения виртуальных адресов по модулям памяти состоит в разбиении адресного пространства на последовательные блоки. Если память состоит из п банков, то ячейка с адресом i при поблочном разбиении будет находиться в банке с номером i / n . В системе памяти с чередованием адресов (interleaved memory) последовательные адреса располагаются в различных банках: ячейка с адресом i находится в банке с номером i mod п. Пусть, например, память состоит из четырех банков, по 256 байт в каждом. В схеме, ориентированной на блочную адресацию, первому банку будут выделены виртуальные адреса 0-255, второму - 256-511 и т. д. В схеме с чередованием адресов последовательные ячейки в первом банке будут иметь виртуальные адреса 0, 4, 8, .... во втором банке - 1, 5, 9 и т. д. (рис. 11.1, а).

Распределение адресного пространства по модулям дает возможность одновременной обработки запросов на доступ к памяти, если соответствующие адреса относятся к разным банкам, Процессор может в одном из циклов затребовать доступ к ячейке i а в следующем цикле - к ячейке j. Если i и j находятся в разных банках, информация будет передана в последовательных циклах. Здесь под циклом понимается цикл процессора, в то время как полный цикл памяти занимает несколько циклов процессора. Таким образом, в данном случае процессор не должен ждать, пока будет завершен полный цикл обращения к ячейке i . Рассмотренный прием позволяет повысить пропускную способность: если система памяти состоит из

Рис. 11.1- Память с чередованием адресов: а - распределение адресов; б- элементы, извлекаемые с шагом 9 из массива 8 х 8

достаточного числа банков, имеется возможность обмена информацией между процессором и памятью со скоростью одно слово за цикл процессора, независимо от длительности цикла памяти.

Решение о том, какой вариант распределения адресов выбрать (поблочный или с расслоением), зависит от ожидаемого порядка доступа к информации. Программы компилируются так, что последовательные команды располагаются в ячейках с последовательными адресами, поэтому высока вероятность, что после команды, извлеченной из ячейки с адресом i, будет выполняться команда из ячейки i + 1. Элементы векторов компилятор также помещает в последовательные ячейки, поэтому в операциях с векторами можно использовать преимущества метода чередования. По этой причине в векторных процессорах обычно применяется какой-либо вариант чередования адресов. В мультипроцессорах с совместно используемой памятью тем не менее используется поблочная адресация, поскольку схемы обращения к памяти в MIMD-системах могут сильно различаться. В таких системах целью является соединить процессор с блоком памяти и задействовать максимум находящейся в нем информации, прежде чем переключиться на другой блок памяти.

Системы памяти зачастую обеспечивают дополнительную гибкость при извлечении элементов векторов. В некоторых системах возможна одновременная загрузка каждого n-го элемента вектора, например, при извлечении элементов вектора V , хранящегося в последовательных ячейках памяти; при п = 4, память возвратит Интервал между элементами называют шагом по индексу или «страйдом» (stride). Одним из интересных применений этого свойства может служить Доступ к матрицам. Если шаг по индексу на единицу больше числа строк в матрице, одиночный запрос на доступ к памяти возвратит все диагональные элементы матрицы (рис. 11.1,б). Ответственность за то, чтобы все извлекаемые элементы матрицы располагались в разных банках, ложится на программиста.

Модели архитектуры памяти вычислительных систем

В рамках как совместно используемой, так и распределенной памяти реализуется несколько моделей архитектур системы памяти.

Рис. 11.2. Классификация моделей архитектур памяти вычислительных систем

На рис. 11.2 приведена классификация таких моделей, применяемых в вычислительных системах класса MIMD (верна и для класса S1MD).

Модели архитектур совместно используемой памяти

В системах с общей памятью все процессоры имеют равные возможности но доступу к единому адресному пространству. Единая память может быть построена как одноблочная или по модульному принципу, но обычно практикуется второй вариант.

Вычислительные системы с общей памятью, где доступ любого процессора к памяти производится единообразно и занимает одинаковое время, называют системами с однородным доступом к памяти и обозначают аббревиатурой UMA (Uniform Memory Access). Это наиболее распространенная архитектура памяти параллельных ВС с общей памятью .

Технически UМА-системы предполагаю наличие узла, соединяющего каждыйиз п процессоров с каждым из т модулей памяти. Простейший путь построения таких ВС - объединение нескольких процессоров (Р i) с единой памятью (M p) посредством общей шины - показан на рис. 11.3, а. В этом случае, однако, в каждый момент времени обмен по шине может вести только один из процессоров, то есть процессоры должны соперничать за доступ к шипе. Когда процессор Р i выбирает из памяти команду, остальные процессоры должны ожидать, пока шина освободится. Если в систему входят только два процессора, они в состоянии работать с производительностью, близкой к максимальной, поскольку их доступ к шинеможно чередовать: пока один процессор декодирует и выполняет команду, другой вправе использовать шину для выборки из памяти следующей команды. Однако когда добавляется третий процессор, производительность начинает падать. При наличии на шине десяти процессоров кривая быстродействия шины (рис. Н.З, а) становится горизонтальной, так что добавление 11-го процессора уже не дает повышения производительности. Нижняя кривая на этом рисунке иллюстрирует тот факт, что память и шина обладают фиксированной пропускной способностью, определяемой комбинацией длительности цикла памяти и протоколом шины, и в многопроцессорной системе с общей шиной эта пропускная способность распределена между несколькими процессорами. Если длительность цикла процессора больше по сравнению с циклом памяти, к шине можно подключать много процессоров. Однако фактически процессор обычно намного быстрее памяти, поэтому данная схема широкого применения не находит.

Рис. 11.3. Общая память: а - объединение процессоров с помощью шины; б - система с локальными кэшами; в - производительность системы как функция от числа процессоров на шине; г - многопроцессорная ВС с общей памятью, состоящей из отдельных модулей

Альтернативный способ построения многопроцессорной ВС с общей памятью на основе НМЛ показан на рис. 11.3, г. Здесь шипа заменена коммутатором, маршрутизирующим запросы процессора к одному из нескольких модулей памяти. Несмотря на то что имеется несколько модулей памяти, все они входят в единое виртуальное адресное пространство. Преимущество такого подхода в том, что коммутатор и состоянии параллельно обслуживать несколько запросов. Каждый процессор может быть соединен со своим модулем памяти и иметь доступ к нему на максимально допустимой скорости. Соперничество между процессорами может возникнуть при попытке одновременного доступа к одному и тому же модулю памяти. В этом случае доступ получает только один процессор, а прочие - блокируются.

К сожалению, архитектура UMA не очень хорошо масштабируется. Наиболее распространенные системы содержат 4-8 процессоров, значительно реже 32-64 процессора. Кроме того, подобные системы нельзя отнести к отказоустойчивым, так как отказ одного процессора или модуля памяти влечет отказ всей ВС.

Другим подходом к построению ВС с общей памятью является неоднородный доступ к памяти, обозначаемый как NUM A (Non-Uniform Memory Access), Здесь по-прежнему фигурирует единое адресное пространство, но каждый процессор имеет локальную память. Доступ процессора к собственной локальной памяти производится напрямую, что намного быстрее, чем доступ к удаленной памяти через коммутатор или сеть. Такая система может быть дополнена глобальной памятью тогда локальные запоминающие устройства играют роль быстрой кэш-памяти для глобальной памяти. Подобная схема может улучшить производительность ВС, по не в состоянии неограниченно отсрочить выравнивание прямой производительности. При наличии у каждого процессора локальной кэш-памяти (рис. 11.3,6) существует высокая вероятность (р > 0,9) того, что нужные команда или данные уже находятся в локальной памяти. Разумная вероятность попадания в локальную память существенно уменьшает число обращений процессора к глобальной памяти и, таким образом, ведет к повышению эффективности. Место излома кривой производительности (верхняя кривая на рис. 11.3, в), соответствующее точке, в которой добавление процессоров еще остается эффективным, теперь перемещается в область 20 процессоров, а тонка, где кривая становится горизонтальной, - в область 30 процессоров.

В рамках концепции NUMA реализуется несколько различных подходов, обозначаемых аббревиатурами СОМА, CC - NUMA и NCC - NUMA .

В архитектуре только с кэш-памятью (СОМА, Cache Only Memory Architecture) локальная память каждого процессора построена как большая кэш-память для быстрого доступа со стороны «своего» процессора . Кэши всех процессоров в совокупности рассматриваются как глобальная память системы. Собственно глобальная память отсутствует. Принципиальная особенность концепции СОМА выражается в динамике. Здесь данные не привязаны статически к определенному модулю памяти и не имеют уникального адреса, остающегося неизменным в течение всего времени существования переменной. В архитектуре СОМА данные переносятся в кэш-память того процессора, который последним их запросил, при этом переменная не фиксирована уникальным адресом и в каждый момент времени может размещаться в любой физической ячейке. Перенос данных из одного локального кэша в другой не требует участия в этом процессе операционной системы, но подразумевает сложную и дорогостоящую аппаратуру управления памятью. Для организации такого режима используют так называемые каталоги кэшей. Отметим также, что последняя копия элемента данных никогда из кэш-памяти не удаляется.

Поскольку в архитектуре СОМА данные перемещаются в локальную кэш-память процессора-владельца, такие ВС в плане производительности обладают существенным преимуществом над другими архитектурами NUM А. С другой стороны, если единственная переменная или две различные переменные, хранящее в одной строке одного и того же кэша, требуются двум процессорам, эта строка кэша должна перемещаться между процессорами туда и обратно при каждом доступе к данным. Такие эффекты могут зависеть от деталей распределения памяти приводить к непредсказуемым ситуациям.

Модель кэш-когерентного доступа к неоднородной памяти (CC-NUMA, Сасhe Coherent Non-Uniform Memory Architecture) принципиально отличается от модели СОМА. В системе CC-NUMA используется не кэш-память, а обычная физически распределенная память. Не происходит никакого копирования страниц или данных между ячейками памяти. Нет никакой программно реализованной передачи сообщений. Существует просто одна карта памяти, с частями, физически связанными медным кабелем, и «умные» аппаратные средства. Аппаратно реализованная кэш-когерентность означает, что не требуется какого-либо программного обеспечения для сохранения множества копий обновленных данных или их передачи. Со всем этим справляется аппаратный уровень. Доступ к локальным модулям памяти в разных узлах системы может производиться одновременно и происходит быстрее, чем к удаленным модулям памяти.

Отличие модели с кэш-некогерентным доступом к неоднородной памяти (NCC-NUMA, Non-Cache Coherent Non-Uniform Memory Architecture) от CC-NUMA очевидно из названия. Архитектура памяти предполагает единое адресное пространство, но не обеспечивает согласованности глобальных данных на аппаратном уровне. Управление использованием таких данных полностью возлагается на программное обеспечение (приложения или компиляторы). Несмотря на это обстоятельство, представляющееся недостатком архитектуры, она оказывается весьма полезной при повышении производительности вычислительных систем с архитектурой памяти типа DSM, рассматриваемой в разделе «Модели архитектур распределенной памяти».

В целом, ВС с общей памятью, построенные по схеме NUMA, называют архитектурами с виртуальной общей памятью (virtual shared memory architectures). Данный вид архитектуры, в частности CC-NUMA, в последнее время рассматривается как самостоятельный и довольно перспективный вид вычислительных систем класса MIMD, поэтому такие ВС ниже будут обсуждены более подробно.

Модели архитектур распределенной памяти

В системе с распределенной памятью каждый процессор обладает собственной памятью и способен адресоваться только к ней. Некоторые авторы называют этот тип систем многомашинными ВС или мультикомпъютерами, подчеркивая тот факт, что блоки, из которых строится система, сами по себе являются небольшими вычислительными системами с процессором и памятью. Модели архитектур с распределенной памятью принято обозначать как архитектуры без прямого доступа к удаленной памяти (NORMA, No Remote Memory Access). Такое название следует из того факта, что каждый процессор имеет доступ только к своей локальной памяти. Доступ к удаленной памяти (локальной памяти другого процессора) возможен только путем обмена сообщениями с процессором, которому принадлежит адресуемая память.

Подобная организация характеризуется рядом достоинств. Во-первых, при доступе к данным не возникает конкуренции за шину или коммутаторы - каждый процессор может полностью использовать полосу пропускания тракта связи с собственной локальной памятью. Во-вторых, отсутствие общей шины означает, что нет и связанных с этим ограничений на число процессоров: размер системы ограничивает только сеть, объединяющая процессоры. В-третьих, снимается проблема когерентности кэш-памяти. Каждый процессор вправе самостоятельно менять свои Данные, не заботясь о согласовании копий данных в собственной локальной кэш-памяти с кэшами других процессоров.

Основной недостаток ВС с распределенной памятью заключается в сложности обмена информацией между процессорами. Если какой-то из процессоров нуждается в данных из памяти другого процессора, он должен обменяться с этим процессором сообщениями. Это приводит к двум видам издержек:

    требуется время для того, чтобы сформировать и переслать сообщение от одно! процессора к другому;

    для обеспечения реакции на сообщения от других процессоров принимающий процессор должен получить запрос прерывания и выполнить процедуру обработки этого прерывания.

Структура системы с распределенной памятью приведена на рис. 11.4. В левой! части (рис. 11.4, а) показан один процессорный элемент (ПЭ). Он включает в себя) собственно процессор (Р), локальную память (М) и два контроллера ввода/вывод (К о и КД В правой части (рис. 11.4, б) показана четырехпроцессорная система, иллюстрирующая, каким образом сообщения пересылаются от одного процессор к другому. По отношению к каждому ПЭ все остальные процессорные элементы можно рассматривать просто как устройства ввода/вывода. Для посылки сообщения в другой ПЭ процессор формирует блок данных в своей локальной памяти и извещает свой локальный контроллер о необходимости передачи информации на внешнее устройство. По сети межсоединений это сообщение пересылается на приемный контроллер ввода/вывода принимающего ПЭ. Последний находит место для сообщения в собственной локальной памяти и уведомляет процессор-источник о получении сообщения.

Рис. 11.4. Вычислительная система с распределенной памятью: а - процессорный элемент; б - объединение процессорных элементов о

Интересный вариант системы с распределенной памятью представляет собой; модель распределенной совместно используемой памяти (DSM, Distribute Shared Memory), известной также и под другим названием архитектуры с неоднородным доступом к памяти и программным обеспечением когерентности (SC-NUMA, Software-Coherent Non-Uniform Memory Architecture). Идея этой модели состоит в том, что ВС, физически будучи системой с распределенной памятью, благодаря операционной системе представляется пользователю как система с общей памятью. Это означает, что операционная система предлагает пользователю единое адресное пространство, несмотря на то что фактическое обращение к памяти «чужого» компьютера ВС по-прежнему обеспечивается путем обмена сообщениями.

Мультипроцессорная когерентность кэш-памяти

Мультипроцессорная система с разделяемой памятью состоит из двух или более независимых процессоров, каждый из которых выполняет либо часть большой программы, либо независимую программу. Все процессоры обращаются к командам и данным, хранящимся в общей основной памяти. Поскольку память является обобществленным ресурсом, при обращении к ней между процессорами возникает соперничество, в результате чего средняя задержка на доступ к памяти увеличивается. Для сокращения такой задержки каждому процессору придается локальная кэш-память, которая, обслуживая локальные обращения к памяти, во многих случаях предотвращает необходимость доступа к совместно используемой основной памяти. В свою очередь, оснащение каждого процессора локальной кэш-памятью приводит к так называемой проблеме когерентности или обеспечения согласо ванности кэш-памяти. Согласно , система является когерентной, если каждая операция чтения по какому-либо адресу, выполненная любым из процессоров, возвращает значение, занесенное в ходе последней операции записи по этому адресу, вне зависимости от того, какой из процессоров производил запись последним.

В простейшей форме проблему когерентности кэш-памяти можно пояснить следующим образом (рис 11.5). Пусть два процессора Р г и Р г связаны с общей памятью посредством шины. Сначала оба процессора читают переменную х. Копии блоков, содержащих эту переменную, пересылаются из основной памяти в локальные кэши обоих процессоров (рис. 11.5, а). Далее процессор P t выполняет операцию увеличения значения переменной х на единицу. Так как копия переменной уже находится в кэш-памяти данного процессора, произойдет кэш-попадание и значение сбудет изменено только в кэш-памяти 1. Если теперь процессор Р 2 вновь выполнит операцию чтения х, то также произойдет кэш-попадание и Р 2 получит хранящееся в его кэш-памяти «старое» значение х (рис. 11.5, б).

Поддержание согласованности требует, чтобы при изменении элемента данных одним из процессоров соответствующие изменения были проведены в кэш-памяти остальных процессоров, где есть копия измененного элемента данных, а также в общей памяти. Схожая проблема возникает, кстати, и в однопроцессорных системах, где присутствует несколько уровней кэш-памяти. Здесь требуется согласовать содержимое кэшей разных уровней.

В решении проблемы когерентности выделяются два подхода: программный и аппаратный. В некоторых системах применяют стратегии, совмещающие оба подхода.

Программные способы решения проблемы когерентности

Программные приемы решения проблемы когерентности позволяют обойтись без дополнительного оборудования или свести его к минимуму }

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
NexxDigital - компьютеры и операционные системы